Global HIV and AIDS statistics—fact sheet. UNAIDS. https://www.unaids.org/en/resources/fact-sheet. Accessed 13 Aug 2021.
Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med. 1998;338:853–60. https://doi.org/10.1056/NEJM199803263381301.
Article
PubMed
Google Scholar
Xiao Q, Guo D, Chen S. Application of CRISPR/Cas9-based gene editing in HIV-1/AIDS therapy. Front Cell Infect Microbiol. 2019;9:69. https://doi.org/10.3389/fcimb.2019.00069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wearne N, Davidson B, Blockman M, Swart A, Jones ES. HIV, drugs and the kidney. Drugs Context. 2020. https://doi.org/10.7573/dic.2019-11-1.
Article
PubMed
PubMed Central
Google Scholar
Ganta KK, Chaubey B. Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol. 2019;35(3):189–204. https://doi.org/10.1007/s10565-018-09451-7.
Article
PubMed
Google Scholar
Chawla A, Wang C, Patton C, et al. A review of long-term toxicity of antiretroviral treatment regimens and implications for an aging population. Infect Dis Ther. 2018;7:183–95. https://doi.org/10.1007/s40121-018-0201-6.
Article
PubMed
PubMed Central
Google Scholar
Vos AG, Venter WDF. Cardiovascular toxicity of contemporary antiretroviral therapy. Curr Opin HIV AIDS. 2021;16(6):286–91. https://doi.org/10.1097/COH.0000000000000702.
Article
CAS
PubMed
Google Scholar
Siliciano RF, Greene WC. HIV latency. Cold Spring Harb Perspect Med. 2011;1(1): a007096. https://doi.org/10.1101/cshperspect.a007096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abram ME, Ferris AL, Das K, Quinoñes O, Shao W, Tuske S, Alvord WG, Arnold E, Hughes SH. Mutations in HIV-1 reverse transcriptase affect the errors made in a single cycle of viral replication. J Virol. 2014;88(13):7589–601. https://doi.org/10.1128/JVI.00302-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84(19):9733–48. https://doi.org/10.1128/JVI.00694-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji JP, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry. 1992;31(4):954–8. https://doi.org/10.1021/bi00119a002.
Article
CAS
PubMed
Google Scholar
Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science. 1988;242(4882):1171–3. https://doi.org/10.1126/science.2460925.
Article
CAS
PubMed
Google Scholar
Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S, Bonhoeffer S. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science. 2014;343(6177):1243727. https://doi.org/10.1126/science.1243727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarkar I, Hauber I, Hauber J, Buchholz F. HIV-1 proviral DNA excision using an evolved recombinase. Science. 2007;316(5833):1912–5. https://doi.org/10.1126/science.1141453.
Article
CAS
PubMed
Google Scholar
Manjunath N, Yi G, Dang Y, Shankar P. Newer gene editing technologies toward HIV gene therapy. Viruses. 2013;5(11):2748–66. https://doi.org/10.3390/v5112748.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stone D, Kiem HP, Jerome KR. Targeted gene disruption to cure HIV. Curr Opin HIV AIDS. 2013;8(3):217–23. https://doi.org/10.1097/COH.0b013e32835f736c.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods. 2011;8(1):67–9. https://doi.org/10.1038/nmeth.1542.
Article
CAS
PubMed
Google Scholar
Juillerat A, Dubois G, Valton J, Thomas S, Stella S, Maréchal A, et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res. 2014;42(8):5390–402. https://doi.org/10.1093/nar/gku155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014. https://doi.org/10.1126/science.1258096.
Article
PubMed
PubMed Central
Google Scholar
Cho S, Kim S, Kim J, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. https://doi.org/10.1038/nbt.2507.
Article
CAS
PubMed
Google Scholar
Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510. https://doi.org/10.1038/srep02510.
Article
PubMed
PubMed Central
Google Scholar
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33. https://doi.org/10.1128/jb.169.12.5429-5433.1987.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82. https://doi.org/10.1007/s00239-004-0046-3.
Article
CAS
PubMed
Google Scholar
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343(6176):1247997. https://doi.org/10.1126/science.1247997.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-Guided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83. https://doi.org/10.1016/j.cell.2013.02.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51. https://doi.org/10.1016/j.cell.2013.06.044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42(19): e147. https://doi.org/10.1093/nar/gku749.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaminski R, Bella R, Yin C, Otte J, Ferrante P, Gendelman HE, et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther. 2016;23(8–9):690–5. https://doi.org/10.1038/gt.2016.41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Fan M, Das AT, Herrera-Carrillo E, Berkhout B. Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA. Nucleic Acids Res. 2020;48(10):5527–39. https://doi.org/10.1093/nar/gkaa226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient inhibition of HIV using CRISPR/Cas13d nuclease system. Viruses. 2021;13(9):1850. https://doi.org/10.3390/v13091850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics. 2015;200(2):423–30. https://doi.org/10.1534/genetics.115.176594.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9. https://doi.org/10.1101/gr.171322.113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–9. https://doi.org/10.1016/j.cell.2013.08.022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, Gu Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54(41):12029–33. https://doi.org/10.1002/anie.201506030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep. 2017;7:42661. https://doi.org/10.1038/srep42661.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chuang CK, Chen CH, Huang CL, Su YH, Peng SH, Lin TY, Tai HC, Yang TS, Tu CF. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors. Anim Biotechnol. 2017;28(3):174–81. https://doi.org/10.1080/10495398.2016.1246453.
Article
CAS
PubMed
Google Scholar
Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26(7):452–62. https://doi.org/10.1089/hum.2015.069.
Article
CAS
PubMed
Google Scholar
Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther. 2015;26(7):443–51. https://doi.org/10.1089/hum.2015.074.
Article
CAS
PubMed
Google Scholar
Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther. 2001;12(15):1893–905. https://doi.org/10.1089/104303401753153947.
Article
CAS
PubMed
Google Scholar
Al Yacoub N, Romanowska M, Haritonova N, Foerster J. Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med. 2007;9(7):579–84. https://doi.org/10.1002/jgm.1052.
Article
CAS
PubMed
Google Scholar
Senís E, Fatouros C, Große S, Wiedtke E, Niopek D, Mueller AK, Börner K, Grimm D. CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J. 2014;9(11):1402–12. https://doi.org/10.1002/biot.201400046.
Article
CAS
PubMed
Google Scholar
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. https://doi.org/10.1038/nature14299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herskovitz J, Hasan M, Patel M, Blomberg WR, Cohen JD, Machhi J, et al. CRISPR-Cas9 mediated exonic disruption for HIV-1 elimination. EBioMedicine. 2021;73: 103678. https://doi.org/10.1016/j.ebiom.2021.103678.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petris G, Casini A, Montagna C, et al. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat Commun. 2017;8:15334. https://doi.org/10.1038/ncomms15334.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Jeeninga RE, Klaver B, Berkhout B, Das AT. Transient CRISPR-Cas treatment can prevent reactivation of HIV-1 replication in a latently infected T-cell line. Viruses. 2021;13(12):2461. https://doi.org/10.3390/v13122461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao HK, Gu Y, Diaz A, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun. 2015;6:6413. https://doi.org/10.1038/ncomms7413.
Article
CAS
PubMed
Google Scholar
Kaminski R, Chen Y, Salkind J, et al. Negative feedback regulation of HIV-1 by gene editing strategy. Sci Rep. 2016;6:31527. https://doi.org/10.1038/srep31527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A. 2014;111(31):11461–6. https://doi.org/10.1073/pnas.1405186111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu W, Lei R, Le Duff Y, Li J, Guo F, Wainberg MA, Liang C. The CRISPR/Cas9 system inactivates latent HIV-1 proviral DNA. Retrovirology. 2015;12:22. https://doi.org/10.1186/s12977-015-0150-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chung CH, Allen AG, Atkins AJ, Sullivan NT, Homan G, Costello R, et al. Safe CRISPR-Cas9 inhibition of HIV-1 with high specificity and broad-spectrum activity by targeting LTR NF-κB binding sites. Mol Ther Nucleic Acids. 2020;21:965–82. https://doi.org/10.1016/j.omtn.2020.07.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lebbink RJ, de Jong DC, Wolters F, Kruse EM, van Ham PM, Wiertz EJ, Nijhuis M. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep. 2017;7:41968. https://doi.org/10.1038/srep41968.
Article
CAS
PubMed
PubMed Central
Google Scholar
Binda CS, Klaver B, Berkhout B, Das AT. CRISPR-Cas9 dual-gRNA attack causes mutation, excision and inversion of the HIV-1 proviral DNA. Viruses. 2020;12(3):330. https://doi.org/10.3390/v12030330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ophinni Y, Miki S, Hayashi Y, Kameoka M. Multiplexed tat-targeting CRISPR-Cas9 protects T cells from acute HIV-1 infection with inhibition of viral escape. Viruses. 2020;12(11):1223. https://doi.org/10.3390/v12111223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin L, Hu S, Mei S, Sun H, Xu F, Li J, et al. CRISPR/Cas9 inhibits multiple steps of HIV-1 infection. Hum Gene Ther. 2018;29(11):1264–76. https://doi.org/10.1089/hum.2018.018.
Article
CAS
PubMed
Google Scholar
Wang Q, Liu S, Liu Z, Ke Z, Li C, Yu X, et al. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res. 2018;250:21–30. https://doi.org/10.1016/j.virusres.2018.04.002.
Article
CAS
PubMed
Google Scholar
Magro G, Calistri A, Parolin C. Targeting and understanding HIV latency: the CRISPR system against the provirus. Pathogens. 2021;10(10):1257. https://doi.org/10.3390/pathogens10101257.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, et al. CRISPR-Cas13a inhibits HIV-1 Infection. Mol Ther Nucleic Acids. 2020;21:147–55. https://doi.org/10.1016/j.omtn.2020.05.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin C, Zhang T, Qu X, Zhang Y, Putatunda R, Xiao X, et al. In vivo excision of HIV-1 provirus by saCas9 and multiplex single-guide RNAs in animal models. Mol Ther. 2017;25(5):1168–86. https://doi.org/10.1016/j.ymthe.2017.03.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bella R, Kaminski R, Mancuso P, Young WB, Chen C, Sariyer R, et al. Removal of HIV DNA by CRISPR from patient blood engrafts in humanized mice. Mol Ther Nucleic Acids. 2018;12:275–82. https://doi.org/10.1016/j.omtn.2018.05.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mancuso P, Chen C, Kaminski R, Gordon J, Liao S, Robinson JA, et al. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat Commun. 2020;11(1):6065. https://doi.org/10.1038/s41467-020-19821-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dash PK, Kaminski R, Bella R, Su H, Mathews S, Ahooyi TM, et al. Sequential LASER ART and CRISPR treatments eliminate HIV-1 in a subset of infected humanized mice. Nat Commun. 2019;10(1):2753. https://doi.org/10.1038/s41467-019-10366-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sengupta S, Siliciano RF. Targeting the latent reservoir for HIV-1. Immunity. 2018;48(5):872–95. https://doi.org/10.1016/j.immuni.2018.04.030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim Y, Anderson JL, Lewin SR. Getting the “kill” into “shock and kill”: strategies to eliminate latent HIV. Cell Host Microbe. 2018;23(1):14–26. https://doi.org/10.1016/j.chom.2017.12.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bullen CK, Laird GM, Durand CM, Siliciano JD, Siliciano RF. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med. 2014;20(4):425–9. https://doi.org/10.1038/nm.3489.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saayman S, Ali SA, Morris KV, Weinberg MS. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. 2015;15(6):819–30. https://doi.org/10.1517/14712598.2015.1036736.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep. 2015;5:16277. https://doi.org/10.1038/srep16277.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bialek JK, Dunay GA, Voges M, Schäfer C, Spohn M, Stucka R, et al. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems. PLoS ONE. 2016;11(6): e0158294. https://doi.org/10.1371/journal.pone.0158294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther. 2016;24(3):499–507. https://doi.org/10.1038/mt.2015.213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saayman SM, Lazar DC, Scott TA, Hart JR, Takahashi M, Burnett JC, et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther. 2016;24(3):488–98. https://doi.org/10.1038/mt.2015.202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-and-lock strategies to cure HIV infection. Viruses. 2020;12(1):84. https://doi.org/10.3390/v12010084.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson A, Basukala B, Lee S, Gagne M, Wong WW, Henderson AJ. Targeted chromatinization and repression of HIV-1 provirus transcription with repurposed CRISPR/Cas9. Viruses. 2020;12(10):1154. https://doi.org/10.3390/v12101154.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–91. https://doi.org/10.1038/nbt.3437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das AT, Binda CS, Berkhout B. Elimination of infectious HIV DNA by CRISPR-Cas9. Curr Opin Virol. 2019;38:81–8. https://doi.org/10.1016/j.coviro.2019.07.00.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Zhao N, Berkhout B, Das AT. CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther. 2016;24(3):522–6. https://doi.org/10.1038/mt.2016.24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Z, Pan Q, Gendron P, Zhu W, Guo F, Cen S, et al. CRISPR/Cas9-derived mutations both inhibit HIV-1 replication and accelerate viral escape. Cell Rep. 2016;15(3):481–9. https://doi.org/10.1016/j.celrep.2016.03.042.
Article
CAS
PubMed
Google Scholar
Liang C, Wainberg MA, Das AT, Berkhout B. CRISPR/Cas9: a double-edged sword when used to combat HIV infection. Retrovirology. 2016;13(1):37. https://doi.org/10.1186/s12977-016-0270-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herrera-Carrillo E, Gao Z, Berkhout B. CRISPR therapy towards an HIV cure. Brief Funct Genomics. 2020;19(3):201–8. https://doi.org/10.1093/bfgp/elz021.
Article
PubMed
Google Scholar
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, Lu Q. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol. 2018;284:91–101. https://doi.org/10.1016/j.jbiotec.2018.08.007.
Article
CAS
PubMed
Google Scholar
Duan J, Lu G, Xie Z, Lou M, Luo J, Guo L, Zhang Y. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res. 2014;24(8):1009–12. https://doi.org/10.1038/cr.2014.87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33(2):175–8. https://doi.org/10.1038/nbt.3127.
Article
CAS
PubMed
Google Scholar
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84. https://doi.org/10.1038/nbt.2808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9. https://doi.org/10.1016/j.cell.2013.08.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32(6):569–76. https://doi.org/10.1038/nbt.2908.
Article
CAS
PubMed
PubMed Central
Google Scholar