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Abstract 

The gut microbiota is emerging as a prominent player in maintaining health through several metabolic and immune 
pathways. Dysregulation of gut microbiota composition, also known as dysbiosis, is involved in the clinical outcome 
of diabetes, inflammatory bowel diseases, cancer, aging and HIV infection. Gut dysbiosis and inflammation persist in 
people living with HIV (PLWH) despite receiving antiretroviral therapy, further contributing to non-AIDS comorbidities. 
Metformin, a widely used antidiabetic agent, has been found to benefit microbiota composition, promote gut bar‑
rier integrity and reduce inflammation in human and animal models of diabetes. Inspired by the effect of metformin 
on diabetes-related gut dysbiosis, we herein critically review the relevance of metformin to control inflammation 
in PLWH. Metformin may improve gut microbiota composition, in turn reducing inflammation and risk of non-AIDS 
comorbidities. This review will pave the way towards innovative strategies to counteract dysregulated microbiota and 
improve the lives of PLWH.
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Introduction
The total human body hosts over 1014 microbes, of which 
around 99% are present in the gastrointestinal (GI) tract 
[1]. The GI microbiota encompasses thousands of bac-
teria, fungi, archaea, viruses and eukaryotic microbes. 
Bacteria make up the greatest proportion of microbes 
in the GI tract and are therefore most frequently stud-
ied. In addition to supporting nutrient absorption, the 
GI microbiota has an important role in homeostasis by 
preventing pathogens from entering the mucosa. Accord-
ingly, a breakdown in the balance between “protective” 
versus “harmful” intestinal bacteria, a concept termed 
dysbiosis [2], can lead to barrier dysfunction and intes-
tinal homeostasis disruption through translocation of 

microbial products leading to inflammation [3]. Increas-
ing evidence has put a spotlight on the contribution of 
gut dysbiosis and its related inflammation in diabetes, 
inflammatory bowel diseases, cancer, aging and HIV 
infection [4–7]. Furthermore, people with type 2 diabe-
tes mellitus (DM2) or HIV infection share comorbidities 
such as dyslipidemia, cardiovascular disease, depression 
and cancer in part through gut microbiome-mediated 
inflammation [8, 9].

HIV infection is characterized by a rapid decline in 
mucosal CD4+ T cell count, epithelial gut damage, trans-
location of microbial products into the systemic circula-
tion and immune activation [10]. By suppressing host 
immune function, HIV leads to microbial dysbiosis and 
translocation, further contributing to chronic inflamma-
tion and immune activation [10]. Antiretroviral therapy 
(ART) has transformed care, leading to major improve-
ments in the health of people living with HIV (PLWH). 
However, despite controlling viral load and CD4+ T-cell 
count, long-term ART reduces but does not normal-
ize inflammation and immune activation compared to 
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healthy people [11]. Gut barrier dysfunction persists, 
allowing microbial products to enter the circulation [12]. 
This heightened inflammation has been associated with 
non-AIDS comorbidities including dyslipidemia, car-
diovascular disease, depression and cancer [13]. Given 
the close interaction between the intestinal microbiota 
and HIV-related inflammation, improving gut health by 
targeted therapies may reduce comorbidities and consti-
tutes the topic of this review.

Isolated in the 1920s from French lilac, metformin 
(dimethylbiguanide) is the most commonly used drug to 
treat DM2. This drug acts as an anti-diabetic agent that 
promotes euglycemia without inducing hypoglycaemia 
and has few side effects. Compared with other classes of 
anti-diabetic drugs such as sulfonylureas or insulin, met-
formin use might have an anti-inflammatory effect as its 
use is associated with a lower risk of cardiovascular dis-
ease [14, 15]. More recently, metformin has been shown 
to be also beneficial in non-diabetic subjects, by reduc-
ing inflammation and aging biomarkers [16]. Metformin 
was reported to extend lifespan in some animal models, 
acting as a diet mimetic agent [17, 18]. In women with 
polycystic ovary syndrome, metformin decreased infer-
tility rate while lowering markers of inflammation such 
as IL-6, TNF-α and intracellular adhesion molecule-1 
(ICAM-1) [19]. Remarkably, Arrieta et  al. showed that 
metformin, when combined with epidermal growth 
factor receptor-tyrosine kinase inhibitor (EGFR-TKI) 
therapy, improved survival in a randomized study for 
patients with advanced lung adenocarcinoma compared 

to EGFR-TKIs alone [20]. Aside from cancer (recently 
reviewed by Klil-Drori et  al. [21]), multiple clinical tri-
als are ongoing in non-diabetic individuals with differ-
ent conditions using metformin as an immunometabolic 
drug (Table 1).

Gut dysbiosis, increased gut permeability, chronic 
inflammation and systemic immune activation are com-
mon features of PLWH or DM2 [22–24]. Common 
microbiota composition changes such as decreased abun-
dance of Bifidobacterium, Bacteroides and Akkermansia 
were found in DM2 and PLWH [7, 25, 26]. In some stud-
ies, metformin has been shown to positively influence GI 
microbiota composition and promote GI barrier integ-
rity, resulting in reduced inflammation [27–33]. Given 
the benefits of metformin use in non-diabetic subjects 
and its well-documented effect on the composition of 
gut microbiota in DM2, we hypothesize that metformin 
lowers risk of non-AIDS comorbidities in ART-treated 
PLWH. Herein, we review and discuss advances in under-
standing the effects of metformin on gut dysbiosis and 
its potential applications in management of HIV-related 
inflammation, to reduce the risk of inflammatory non-
AIDS comorbidities.

Microbiota dysbiosis in obesity and DM2
DM2 is an increasing public health issue arising from 
genetic factors, sedentary lifestyle, Western diet and exces-
sive visceral fat. First noted in 2008, alterations of gut 
microbiota composition in DM2 individuals have been well 
studied and reviewed [4, 25, 34–38]. Among the commonly 

Table 1  Ongoing clinical trials in non-diabetic individuals using metformin

Conditions Number of participants Country Clinical trial number

Cardiovascular

 Abdominal aortic aneurysm 170 Austria NCT03507413

 Hypertension obesity 360 China NCT00538486

 Coronary artery disease 200 USA NCT00343395

 Coronary artery disease 173 UK NCT00723307

 Myocardial infarction 380 Netherland NCT01217307

 Ischemic heart disease 120 China NCT01879293

Aging

 Surgical outcomes in people over 60 y.o. 2000 USA NCT03861767

 Age-related macular degeneration 186 USA NCT02684578

 Pre-frail elderly 150 Indonesia NCT02325245

Other conditions

 Familial adenomatous polyposis 100 Korea NCT01725490

 Nonalcoholic fatty liver disease (NAFLD) 150 Italy NCT01544751

 Chronic kidney diseases 385 Belgium NCT03831464

 Beta thalassemia major anemia 60 Egypt NCT02984475

Chronic viral infection

 HIV infection 22 Canada NCT02659306
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reported findings, the genera of Bifidobacterium, Bac-
teroides, Faecalibacterium, Akkermansia and Roseburia 
abundance were decreased in DM2, while the genera of 
Ruminococcus, Fusobacterium, and Blautia were increased 
in DM2 [25]. It still remains unclear whether the DM2-
associated dysbiosis is a cause or a consequence of glucose 
intake and/or regulation. In DM2 individuals, dysbiosis fos-
ters bacterial translocation through the damaged epithelial 
gut barrier, leading to systemic immune activation. Bacte-
rial lipopolysaccharide (LPS) binds to TLR4 and activates 
monocytes/macrophages leading to pro-inflammatory IL-6 
and TNF secretion, and insulin resistance by inhibiting the 
insulin tyrosine kinase receptor signalling [39]. Moreover, 
LPS-induced inflammatory response reduced insulin-
receptor signaling and glucose transport in human muscle 
cells [40]. In addition, DM2 patients have lower levels of 
short chain fatty acids (SCFAs), especially propionate and 
butyrate, in their feces compared with non-diabetic sub-
jects [41]. SCFAs are a subset of fatty acids produced by the 
gut microbiota during the fermentation of polysaccharides, 
among which, anti-inflammatory acetate, propionate and 
butyrate are the most abundant [42, 43]. As the primary 
energy source for colonic epithelial cells, SCFAs improve 
intestinal barrier function, prevent microbial transloca-
tion and further reduce inflammation [42, 44]. Therefore, 
SCFAs and SCFA-producing bacteria are crucial in damp-
ening inflammation.

Based on the association between microbiota and DM2, 
several groups have tried to modulate gut dysbiosis with 
prebiotics, probiotics and fecal microbiota transplanta-
tion (FMT) to improve insulin sensitivity in animals and 
humans [45–47]. Vrieze et  al. conducted two studies in 
2012 showing that FMT from lean controls improved insu-
lin sensitivity in participants with metabolic syndrome, 
in association with increased intestinal abundance of 
butyrate-producing bacteria when compared with the con-
trol group receiving autologous FMT [45, 46]. Everard et al. 
reported that the abundance of Akkermansia muciniphila, 
a gut-protective bacterium, was 3300-fold lower in obese 
mice than in their lean littermates. Encouragingly, a 4-week 
oral gavage of live A. muciniphila in mice reversed high-fat 
diet-induced metabolic disorders [47]. In 2019, A mucin-
iphila supplementation in obese people improved insulin 
sensitivity and reduced cholesterol levels in the absence of 
toxicity [48]. These studies demonstrate the implication of 
a disturbed gut microbiota in obesity and DM2 outcomes.

More than meets the eye: metformin and gut 
microbiota modification in DM2
Among different anti-diabetic medications, metformin 
has been shown to profoundly alter the gut microbi-
ota composition. Metformin decreases insulin resist-
ance in DM2 via AMPK stimulation, reducing hepatic 

gluconeogenesis through modulation of several intra-
cellular pathways [49]. However, growing evidence sug-
gests that the effects of metformin are also mediated 
through changes in gut microbiota composition, an 
effect conserved from the nematode Caenorhabditis 
elegans to humans [17]. Metformin is predominantly 
concentrated in the jejunum with levels 30–300 times 
higher than in plasma [50]. Sum et al. showed in 1992 
that intravenous administration of metformin did not 
improve blood glucose in contrast with oral adminis-
tration in humans [51]. Moreover, depleting the micro-
biota using broad-spectrum antibiotics abrogated 
the anti-diabetic effects of metformin in high-fat diet 
(HFD) mice [52].

Microbiota compositional changes associated with 
metformin use in DM2 or healthy people are summarized 
in Table  2. Factors such as study population, sequenc-
ing method, dietary intake and medication may explain 
discrepancies between studies. However, increased A. 
muciniphila and Lactobacillus, and decreased Intestini-
bacter abundance were observed after metformin therapy 
in three studies [27, 29, 52]. A. muciniphila is a commen-
sal anaerobic mucin-degrading bacterium whose abun-
dance is positively associated with glucose regulation 
[52, 53]. This bacterium represents 1–5% of all intestinal 
bacteria in healthy individuals and has been shown to 
reduce insulin resistance following treatment with prebi-
otic polyphenols in animal models of obesity [54]. Met-
formin also increased abundance of A. muciniphila in 
HFD-fed mice [52]. Similarly, blood SCFA butyrate and 
propionate levels were shown to be increased in met-
formin-treated DM2 subjects due to microbiota modifi-
cation [27]. Moreover, metformin treatment was shown 
to decrease the frequency of pathogenic Th17 cells and 
increase the frequency of regulatory T cells (Tregs), thus 
reducing inflammation in diabetes or IBD murine mod-
els [55, 56]. Gut dysbiosis and low SCFA production 
were associated with lower frequency of mucosal Tregs 
in mice and humans [57]. Bhaskaran et al. demonstrated 
that Tregs were essential in the anti-inflammatory effect 
of gut-derived SCFA in mice [58].

Nevertheless, metformin increased Escherichia abun-
dance which is associated with bloating and diarrhea, 
contributing to discontinuation of metformin in up to 
30% of diabetic people [27, 29, 59, 60]. Toxicity includ-
ing gastrointestinal upset, hyperlactatemia and metabolic 
acidosis, occurs infrequently when metformin accumu-
lates due renal insufficiency or overdose [61]. Some cases 
of lactic acidosis and ketoacidosis have been reported in 
metformin-treated diabetic PLWH receiving stavudine 
(d4T) and didanosine (ddI) nucleoside analogs, no longer 
used in current practice [62–64]. Thus, use of metformin 
may contribute to risks including gastrointestinal distress 
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and drug interactions in certain antiretroviral therapies, 
however, the benefits outweigh the risks.

Microbiota, gut permeability and inflammation 
in HIV infection
During acute HIV infection, the virus rapidly dissemi-
nates while establishing a pool of latently infected cells 
[67]. The GI tract is critical for the pathogenesis of HIV 
infection and serves as a major site of viral replica-
tion [68]. Up to 70% of GI and 20% of peripheral blood 
CD4+ T-cells express CCR5, a chemokine receptor that 
serves as co-receptor allowing for the entry of HIV [67]. 
Thus, intestinal CD4+ T-cells are a preferential target of 
the virus and are massively depleted during early infec-
tion. In simian immunodeficiency virus (SIV) infected 
macaques and HIV infected humanized mice, damages to 
the intestinal epithelium were linked to microbial trans-
location [69–71]. In PLWH, the disruption in gut homeo-
stasis also results in increased permeability of the gut and 
translocation of microbial products such as LPS, bacte-
rial DNA, and fungal β-d-Glucan into the circulatory sys-
tem, promoting chronic immune activation and disease 
progression [10, 72].

In parallel, bacterial communities found in the intestine 
of HIV-infected individuals have been shown to differ 
from those of individuals not infected with HIV indepen-
dently of age, sex and sexual practice, recently reviewed 
by Vujkovic-Cvijin et  al. [7]. Vujkovic-Cvijin et  al. [73] 

used high-resolution bacterial community profiling and 
identified a dysbiotic mucosal-adherent community in 
HIV-infected subjects with high Proteobacteria and low 
Bacteroidia associated with markers of mucosal immune 
disruption, T-cell activation, and chronic inflammation. 
Rocafort et al. [74] found that ART-naïve HIV-1-infected 
subjects were significantly depleted in Akkermansia, 
Anaerovibrio, Bifidobacterium, and Clostridium, com-
pared to HIV negative individuals. ART exposure was 
not associated with changes in abundance of such genera, 
compared with ART-naïve. In SIV infected macaques, 
gut dysbiosis was also observed and strongly correlated 
with cytokine gene expression in the gut‐draining mes-
enteric lymph nodes including IL-10 and IL-6 [75]. Probi-
otic/prebiotic supplementation improves gastrointestinal 
immune function, increases reconstitution and decreases 
inflammation in ART-treated SIV-infected macaques 
[76].

Accumulating evidence has shown that dysregulation 
of the gut microbiota metabolism plays a role in HIV 
disease progression. The activity of the indoleamine-
2,3-dioxygenase-1 (IDO-1), an enzyme catabolising the 
essential amino-acid tryptophan into immunosuppres-
sive kynurenines, has been recognized as a key factor of 
HIV immune dysfunction and damage to the gut mucosa 
[73, 77]. The activity of IDO-1 correlates with Th17 cell 
loss, Tregs elevation, gut and systemic inflammation, 
reservoir size and disease progression in HIV-infected 

Table 2  Microbiota compositional changes associated with metformin use in DM2 or healthy people

N/A not available

Study, year
(Country)

Participants 
with DM vs controls 
(n)

Increased bacterial 
abundance

Decreased bacterial 
abundance

Increased metabolites

People with DM2

 Karlsson 2013 [36] (Sweden) 20 vs 33 Clostridium NA NA

 Forslund 2015 [27] (Den‑
mark)

93 vs 106 A. muciniphila, Escherichia, 
Lactobacillus, Roseburia, Sub-
doligranulum, Clostridiales

Intestinibacter Butyrate and propionate path‑
way expression

 Cuesta-Zuluaga 2017 [53] 
(Colombia)

14 vs 14 A. muciniphila, Butyrivibrio, B. 
bifidum, Prevotella

NA NA

 Wu 2017 [29] (Spain) 22 vs 18 Escherichia, Bifidobacterium, A. 
muciniphila

Intestinibacter Propionate, butyrate, and 
acetate

 Sun 2018 [65] (China) 22, prospective study B. fragilis, B. finegoldii Bile acid glycoursodeoxycholic 
acid

 Zhang 2019 [66] (China) 51 vs 26 Spirochaete, Turicibacter, 
Fusobacterium

Taurine and hypotaurine 
metabolism

Healthy, non-diabetic people

 Elbere 2018 [59] (Latvia) 18, prospective study Streptococcus, Enterobac-
teriaceae, A. muciniphila, 
Ruminococcacea, Blautia

Ruminiclostridium NA

 Bryrup 2019 [60] (Denmark) 27, prospective study Escherichia/Shigella, Bilophila, 
Lachnoclostridium, Caproic-
iproducens

Intestinibacter, Clostridium,
Terrisporobacter

NA
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subjects [78, 79]. Furthermore, gut dysbiosis corre-
lated with plasma kynurenine levels in ART-treated 
PLWH [73]. In addition, a decreased abundance of bac-
teria producing the gut epithelial protector butyrate, 
including Roseburia, Coprococcus, Faecalibacterium, 
and Eubacterium, was observed in both HIV-treated 
and ART-naïve individuals, in association with altered 
SCFAs profiles [80, 81]. Finally, HIV infection is associ-
ated with increased risk of coronary heart disease beyond 
that explained by traditional risk factors, and altered 
gut microbiota has been proposed as a key contributing 
determinant [82]. Higher activity of the kynurenine path-
way and higher trimethylamine N-oxide (TMAO) plasma 
levels were also associated with an increased risk of car-
diovascular disease [83, 84]. TMAO is converted in the 
liver from trimethylamine (TMA) which is an organic 
compound synthesized exclusively by the gut microbiota 
from dietary nutrients. Haissman et al. [85] reported that 
microbiota-dependent TMAO levels are also associated 
with monocyte activation in untreated PLWH. By com-
paring PLWH with and without coronary heart disease, 
Kehrmann et al. [86] showed that high circulating TMAO 
was a marker of coronary heart disease in association 

with the fecal abundance of Phascolarctobacterium, Des-
ulfovibrio, Sutterella, and Faecalibacterium.

Insights on the use of metformin in non‑diabetic 
PLWH
Treatment with metformin in PLWH has been shown to 
decrease lipodystrophy syndrome, hyperlipidemia and 
insulin sensitivity [87–90]. Moreover, Fitch et al. reported 
that metformin prevented progression of coronary artery 
calcification (CAC) and calcified plaque volume in PLWH 
with metabolic syndrome [90]. Shikuma et  al. recently 
reported that metformin reduced CD4+ T‐cell exhaus-
tion in non-diabetic ART‐treated PLWH [91]. Our team 
is currently carrying out a pilot study to determine the 
effect of metformin in non-diabetic ART-treated PLWH 
(NTC02659306) [92]. Metformin might be a promis-
ing treatment to control inflammation in non-diabetic 
PLWH through multiple pathways illustrated in Fig. 1.

As several studies showed that metformin increased 
A. muciniphila abundance in diet-induced obese mice 
and DM2 patients [27, 29, 52, 53, 93], metformin may 
also increase A. muciniphila abundance in ART-treated 
PLWH to promote epithelial barrier integrity and 

Fig. 1  Potential effects of metformin in non-diabetic PLWH
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decrease inflammation. Indeed, Reunanen et  al. showed 
that A. muciniphila improved gut barrier integrity by 
binding to enterocytes in Caco-2 and HT-29 human 
colonic cell models [94]. Moreover, A. muciniphila 
administration reduced translocation of bacterial LPS 
and adipose tissue inflammation in an obese insulin-
resistant mouse model [47].

In PLWH, there is a lower abundance of butyrate-pro-
ducing bacteria in the gut microbiota [80, 81]. Interest-
ingly, metformin was shown to increase the abundance 
of butyrate producing bacteria in both diabetic and 
healthy individuals [27, 60]. We therefore suggest that 
metformin, through increasing butyrate production, 
may decrease inflammation in ART-treated PLWH by 
enhancing intestinal epithelial barrier function, prevent-
ing microbial translocation and increasing mucosal Treg 
frequency [44, 58, 81].

Tryptophan catabolism and the kynurenine pathway 
were also associated with disease progression and HIV 
reservoir size in ART-treated PLWH [78]. Moreover, 
dysbiosis was associated with the kynurenine pathway 
in PLWH [73]. As Muzik et al. reported that metformin 
treatment of insulin resistant diabetic subjects was asso-
ciated with down-regulation of the kynurenine pathway 
[95], metformin might also decrease tryptophan catabo-
lism in non-diabetic ART-treated PLWH by altering 
microbiota composition.

Metformin may also reduce HIV-related inflammation 
independently of microbiota modification by modulat-
ing several signalling pathways: (1) suppressing nuclear 
factor κB activation, which enhances HIV transcription 
and induces the expression of various pro-inflammatory 
genes; (2) indirectly reducing secretion of proinflam-
matory cytokines such as tumour necrosis factor-alpha 
(TNF-α) and interleukin-1-β (IL-1β), which remain a 
high level in PLWH; (3) inhibiting mTOR, through an 
AMPK-dependent mechanism, reducing CD4 T cell 
activation, in turn reducing inflammation; (4) indirectly 
blocking mTOR signalling by inhibiting Rag GTPases 
[96–98].

Conclusions
Gut dysbiosis has been associated with DM2- and HIV-
related gut permeability, microbial translocation and 
inflammation. Metformin has been shown to modulate 
gut microbiota composition in diabetic and non-dia-
betic people, in association with reduction of gut dam-
age and inflammation. However, the efficacy and safety 
of metformin to control inflammation and reduce risk 
of inflammatory comorbidities in non-diabetic PLWH 
are still unknown. Direct evidence is needed to verify 
and endorse the beneficial effects of metformin as a pos-
sible modulator of HIV-related inflammation. Following 

our pilot study, larger randomized placebo-controlled 
studies will be needed to assess the independent effect 
of metformin on gut dysbiosis and inflammation in 
non-diabetic PLWH. Collaborative effort encompassing 
microbiology, clinical care, epidemiology and artificial 
intelligence will define the dose and duration to obtain 
the optimal benefit of metformin as an immune modula-
tor in ART-treated PLWH.
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