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Abstract 

Background:  Our understanding of HIV-1 and antiretroviral treatment (ART) is strongly biased towards subtype 
B, the predominant subtype in North America and western Europe. Efforts to characterize the response to first-line 
treatments in other HIV-1 subtypes have been hindered by the availability of large study cohorts in resource-limited 
settings. To maximize our statistical power, we combined HIV-1 sequence and clinical data from every available study 
population associated with the Joint Clinical Research Centre (JCRC) in Uganda. These records were combined with 
contemporaneous ART-naive records from Uganda in the Stanford HIVdb database.

Methods:  Treatment failures were defined by the presence of HIV genotype records with sample collection dates 
after the ART start dates in the JCRC database. Drug resistances were predicted by the Stanford HIVdb algorithm, and 
HIV subtype classification and recombination detection was performed with SCUEAL. We used Bayesian network 
analysis to evaluate associations between drug exposures and subtypes, and binomial regression for associations with 
recombination.

Results:  This is the largest database of first-line treatment failures ( n = 1724 ) in Uganda to date, with a predicted sta‑
tistical power of 80% to detect subtype associations at an odds ratio of ≥ 1.2 . In the subset where drug regimen data 
were available, we observed that use of 3TC was associated with a higher rate of first line treatment failure, whereas 
regimens containing AZT and TDF were associated with reduced rates of failure. In the complete database, we found 
limited evidence of associations between HIV-1 subtypes and treatment failure, with the exception of a significantly 
lower frequency of failures among A/D recombinants that comprised about 7% of the population. First-line treatment 
failure was significantly associated with reduced numbers of recombination breakpoints across subtypes.

Conclusions:  Expanding access to first-line ART should confer the anticipated public health benefits in Uganda, 
despite known differences in the pathogenesis of HIV-1 subtypes. Furthermore, the impact of ART may actually be 
enhanced by frequent inter-subtype recombination in this region.
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Background
East Africa was one of the first regions in the world to 
experience high rates of HIV infection [1]. In 1990, for 
instance, some antenatal clinics in Uganda recorded 
adult HIV prevalences among women exceeding 30% 
[2]. Currently, the adult prevalence of HIV in Uganda is 
about 7.1% [3]. Increasing the coverage of combination 
antiretroviral therapy in Uganda is a crucial public health 
objective to not only reduce HIV-related morbidity and 
mortality, but also to prevent the onward transmission of 
HIV by reducing plasma viral loads [4, 5]. However, the 
enormous genetic diversity of the HIV-1 subtypes has 
been a persistent concern for antiretroviral treatment, 
especially in low- and middle-income countries like 
Uganda with multiple prevalent subtypes [6]. Antiret-
roviral drugs have generally been developed and tested 
on HIV subtype B [7], which is the predominant sub-
type in North America and western Europe [8]. HIV-1 
infections in Uganda are predominated by subtypes A 
and D [9], with a low frequency of subtype C that is the 
predominant subtype in southern Africa. In addition, 
recombinants of subtypes A and D have historically been 
observed in about 10% to 30% of HIV infections sampled 
in Uganda [10, 11]. Based on a phylogenetic analysis of 
dated HIV sequences, subtype A likely migrated into 
Uganda around the 1950s before subtype D entered about 
a decade afterwards [12]. To date, subtype A HIV-1 infec-
tions are more prevalent in the east and north regions 
of Uganda, while subtype D dominates in the west and 
south of this small country [13].

There is accumulating evidence of clinically-signifi-
cant differences among the HIV-1 subtypes. For exam-
ple, multiple studies have observed that subtype D is 
associated with a faster rate of disease progression rela-
tive to subtype A in the absence of treatment [14–16]. 
Our previous 15-year natural history study of HIV dis-
ease progression confirmed these observations, but also 
described a significantly slower rate of disease progres-
sion in subtype C HIV-1 infected individuals over those 
infected with subtype A or D [16, 17]. Previous studies of 
serodiscordant couples have also reported that subtype D 
has a lower transmission rate than subtype A [18], which 
is consistent with a decline in the overall prevalence of 
subtype D in the region [19]. In addition, HIV subtype 
variation can have an impact on the emergence of drug 
resistance mutations. For example, the HIV-1 RT muta-
tion K65R emerges more rapidly in subtype C infections 
due to variation among subtypes in a homopolymeric 
region that interrupts reverse transcription and induces a 
higher rate of base misincorporation [20].

Evaluating the clinical significance of HIV non-B sub-
types in the context of antiretroviral treatment (ART) 
remains a significant challenge and few studies have 

the necessary sample sizes in resource-limited settings, 
let alone in any specific region. In a recent systematic 
review of switching to second-line treatments in sub-
Saharan Africa [21], the estimated incidence averaged 
about 2.6 first-line treatment failures per 100 person-
years and ranged between 2 to 5 per 100 person-years. 
Consequently, prospectively enrolling patients on first-
line treatment can severely limit the expected number of 
treatment failures in the sample population. In this study, 
we have combined HIV sequence and clinical data associ-
ated with first-line treatment failures from multiple study 
cohorts and clinical sites based in Uganda ( n = 1724 ). 
These data were supplemented with drug-naive (base-
line) HIV sequence data from the same clinical sites 
( n = 968 ) and location-time matched records from the 
Stanford HIV drug resistance database ( n = 1462 ) [22] 
for a combined total of 4154 patient records. To date, this 
represents the largest retrospective multi-site analysis of 
HIV first-line treatment failures in Uganda, and likely in 
all of sub-Saharan Africa. The primary objective of our 
study was to assess the clinical significance of HIV-1 sub-
types in the context of first-line treatment failure. Results 
from our investigation then motivated a deeper analysis 
on the impact of frequent inter-subtype recombination in 
this region where both subtypes A and D are prevalent. 
Here we report evidence that first-line treatment failure 
in Uganda is generally more strongly associated with 
drug regimens than HIV-1 subtypes. By expanding our 
database, however, we observe that A/D recombinants 
are significantly less associated with first-line treatment 
failure, and that this effect is more pronounced with an 
increasing number of putative recombination break-
points in HIV-1 pol.

Methods
Data collection
Anonymized HIV genotypes and clinical data records 
were collected from multiple clinical sites and cohort 
studies (Additional file  1: Table  S1). Samples from the 
Europe–Africa Research Network for Evaluation of 
Second-line Therapy (EARNEST) trial [23] were col-
lected under a protocol approved by the research ethics 
committee at University College London, with written 
informed consent provided by patients, or by caregiv-
ers for patients under 18 years of age. The sample col-
lection protocol for the Hormonal Contraception and 
HIV-1 Genital Shedding and Disease Progression among 
Women with Primary HIV Infection (GS) study [16, 24] 
was approved by the institutional review boards of the 
collaborating institutions, and all participants provided 
informed consent. Samples from the Pan-African Studies 
to Evaluate Resistance (2008, PASER) network [25] were 
collected under a protocol approved by research ethics 
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committees at the collaborating sites and the Academic 
Medical Center (AMC) of the University of Amsterdam, 
and all participants provided written informed consent. 
Samples from the Joint Clinical Research Centre (JCRC), 
the main HIV care provider in Uganda, included patient 
samples from the JCRC clinics (2005–2016, DR) and the 
Monitoring Antiretroviral Resistance in Children (2010–
2011, MARCH) observational cohort study [26] with 
informed consent provided by parent(s)/guardian(s); the 
sample collection protocol was approved by the ethical 
committees at the JCRC and the AMC. Our analysis of 
these anonymized data was collectively approved by the 
institutional review board of the JCRC (EM10-07).

Samples collected in countries other than Uganda (e.g., 
Zimbabwe, Malawi) were excluded from further analyses. 
First-line treatment failures were defined by the presence 
of an HIV drug resistance genotype record in the data-
base subsequent to start of treatment, which implied 
a detectable viral load ( > 50  copies/mL plasma). Drug 
exposures were recorded as the drug regimen at the start 
of treatment for baseline samples, and the regimen at the 
time of virological failure otherwise. The median collec-
tion year of samples was 2010, with the earliest sample 
collected in 2005 and the most recent in 2016; this study 
was initiated in August 2016.

Data processing
We used a rules-based record linkage algorithm to asso-
ciate these sequence-derived data to clinical variables 
in a separate database, with a customized rule set for 
the sequence/patient label nomenclature of each study 
population. This record linkage was determined to be a 
necessary processing step when initial analyses found dis-
cordant patient identifiers between databases that were 
likely the result of errors during manual data entry. The 
clinical data included cohort study, region, gender, age at 
enrollment, plasma viral load and CD4 cell count at base-
line, and first-line ART regimen. To augment the number 
of baseline samples in the data, we merged the sequence 
database with the genotype-treatment correlation dataset 
published by the Stanford HIVdb database [22], which we 
reduced to only drug-naive records collected in Uganda 
( n = 1462 ). Note that our linkage algorithm was applied 
only to anonymized data collected from clinical sites and 
cohort studies associated with the JCRC; no linkage was 
applied to any data from the Stanford database. Since 
the Stanford HIVdb records spanned a broader range of 
sample collection dates, we excluded all HIVdb records 
that were sampled prior to 2005 to ensure that the HIVdb 
sequences were contemporaneous with samples from our 
multi-cohort study. We verified that none of the HIVdb 
sequences duplicated records in the JCRC database. 
Resistance predictions for HIV sequences were generated 

with the Stanford HIVdb algorithm [22]. Subtype pre-
dictions from nucleotide sequences were obtained using 
SCUEAL [27] and verified with REGA (version 3.0) [28] 
and by phylogenetic reconstruction. Complete details 
on the sequence analysis methods are provided as Addi-
tional file 1: Text S1.

Statistical analysis
All statistical analyses, including generalized linear mod-
els (GLMs), were performed in the R computing envi-
ronment unless noted otherwise. Associations between 
categorical variables were evaluated using Fisher’s exact 
tests. We used a log-transformation of plasma viral loads 
and a cubic root transformation of CD4 cell counts to 
accommodate the normality assumption of parametric 
tests. To fit GLMs to the genotypic susceptibility score 
(GSS) data [29], which are calculated to a resolution of 
0.25 units, we rounded these outcomes to the nearest 
integer and used a binomial logit-link function. Statisti-
cal tests were generally reported by 95% confidence inter-
vals; in cases where we reported P-values, significance 
was interpreted at a threshold of α = 0.05 unless other-
wise noted. Cases with missing data were dropped from 
the respective analyses. A Bayesian network analysis was 
performed using a custom implementation in HyPhy [30] 
(see Additional file 1: Text S2).

Results
Subtype distribution
We identified 968 baseline and 1724 first-line treat-
ment failures from the Ugandan study populations, and 
an additional 1462 drug-naïve samples from Uganda in 
the Stanford HIVdb database for a total of 4154 samples 
(Table 1). This sample size is predicted to have sufficient 
power to detect an association between treatment failure 
and subtype at an odds ratio of ∼1.2 or greater, given an 
overall 5% prevalence of failure and a subtype frequency 
of 20% (Additional file 1: Figure S1). Figure 1 displays the 
distribution of HIV-1 subtypes across regions of Uganda. 
Overall, HIV-1 subtype A was the most prevalent in our 
database (43%), followed by subtype D (30%). We also 
observed a greater frequency of A/D recombinants (7%) 
than subtype C (3%). About 17% of sequences received 
‘other’ subtype/recombinant classifications; the most 
common variants within this category were unclassified 
subtype U ( n = 116 ) and A1/U recombinants ( n = 100 ). 
In our subsequent phylogenetic analysis (Additional 
file 1: Figure S2), subtype U sequences and sequence frag-
ments were placed within or adjacent to the subtype A 
subtree; hence, they may represent subtype A lineages 
that are distinct from the subtype reference sequences. 
We retained the original subtype assignments for the 
remainder of our analyses. The proportionate agreement 
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between the SCUEAL and REGA algorithms in assign-
ing subtype A, C and D and A/D recombinants was 96.4% 
(Cohen’s κ = 0.94 ; Additional file 1: Table S2).

Treatment failure and drug resistance
We observed significant regional differences in drug 
exposure: for example, 3TC was more frequently pre-
scribed in Kampala than other regions (Fisher’s exact 
test, odds ratio OR = 2.45 , 95% CI = [1.95, 3.07]) and 
EFV was prescribed less frequently ( OR = 0.61 [0.50, 

0.75]). To evaluate whether drug resistance patterns 
were consistent with treatment failures, we calculated 
the genotypic susceptibility score (GSS) for each indi-
vidual with a known drug regimen ( n = 2012). The GSS 
can be interpreted as the number of effective drugs in an 
individual’s regimen, given the genetic makeup of their 
virus population [29], where drug effectiveness is based 
on the Stanford HIVdb resistance score. The mean GSS 
among failure samples (0.77) was significantly lower than 
the mean among baseline samples (2.71; binomial GLM 

Table 1  Summary table for HIV-1 baseline and treatment failure samples

Table counts do not include cases with missing data on region, drug exposure, viral load or CD4 cell counts

n/a indicates that no data were available for the variable and group, 3TC lamivudine, AZT zidovudine, NVP nevirapine, EFV efavirenz, d4T stavudine, FTC emtricitabine, 
TDF tenofovir
a  Numbers correspond to the median and interquartile range (in parentheses). 95% confidence intervals are reported for the following test statistics: b the difference 
between the means of two groups from Student’s t-test. c the odds ratio for Fisher’s exact test; d the difference in treatment failures in log odds of structural zeroes in a 
zero-inflated Poisson (ZIP) model, and; e the decrease in the log-transformed number of breakpoints among treatment failures under the ZIP model

Variable Baseline % Failure % 95% CI

2430 58 1724 42

Gender

Male n/a 208 43.2

Female n/a 232 56.8

Age (years) n/a 19 (13–39)a

Region

Fort Portal 222 30.5 86 7.5

Gulu 0 0 18 1.6

Kabale 0 0 26 2.3

Kampala 252 34.7 910 79.5

Mbale 253 34.8 82 7.2

Mbarara 0 0 22 1.9

Drug exposures

3TC/AZT/NVP 172 23.8 318 26.0

3TC/AZT/EFV 163 22.6 196 16.0

3TC/d4T/NVP 46 6.4 208 17.0

EFV/FTC/TDF 179 24.8 36 2.9

3TC/EFV/TDF 0 113 9.2

Other 161 22.3 351 28.7

log10 viral load 5.2 (4.7–5.9)a 4.8 (4.2–5.3)a 0.35 to 0.54b

CD4 cell count n/a 111 (35–232)a

Subtype predictions

A 1028 42.3 758 44 0.94 to 1.21c

A/D 217 8.9 85 4.9 0.40 to 0.69

C 60 2.5 56 3.2 0.90 to 1.95

D 751 30.9 503 29.2 0.80 to 1.06

Other 374 15.4 322 18.7 1.06 to 1.49

Recombination breakpoints

0 1634 67.2 1234 71.6 0.02 to 0.31d

1 124 5.1 84 4.9 (− 0.20) to (− 0.03)e

2 327 13.5 248 14.4

3 187 7.7 94 5.5

4 158 6.5 64 3.7
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effect estimate = − 1.27 log odds, 95% CI = [ − 1.32 , 
− 1.23 ]; Fig. 2), which was consistent with the virus popu-
lations accumulating resistance mutations in response 
to each patient’s drug regimen. We found no significant 
effect of subtype on GSS when this term was added to the 
model, which implied that patterns of drug resistance in 
treatment failures were similar across subtypes.

Next, we used Markov chain Monte Carlo sampling to 
fit a Bayesian network model [31] with baseline/failure 
as a binomial variable to evaluate associations between 
specific drugs and treatment failure, while accommodat-
ing for potential subtype differences, geographic regional 
differences, and drugs employed in combination therapy 

(Fig.  3). Convergence between replicate chain samples 
was accessed with respect to posterior probability using 
the Gelman-Rubin diagnostic (upper confidence limit 
= 1.01). The model was fit to the subset of records with 
complete information about sampling region, subtype 
classification and drug exposures ( n = 1750 ). Of this sub-
set, n = 721 represented baseline records and n = 1029 
represented treatment failures (Table  1). The distribu-
tion of edges among nodes representing antiretroviral 
drugs was consistent with common drug combinations. 
For example, we obtained well-supported edges con-
necting the nodes representing the drugs 3TC, AZT and 
NVP. Our network model suggests that, once regional 
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differences and drug combinations were accounted for, 
only 3TC was positively associated with treatment failure 
(marginal posterior probability, MPP = 0.95 ). Similarly, 
the model predicted that AZT and TDF were negatively 
associated with failures (both MPP = 0.91 ). Our consen-
sus Bayesian network did not detect any significant asso-
ciations between HIV-1 subtypes and any other variables 

in the network, including first-line treatment failures 
(Fig. 3). This result indicated that any statistical associa-
tion between first-line treatment failure and HIV-1 sub-
types was overwhelmed by the effects of drug exposures. 
Overall, when accounting for subtype, regional sites in 
Uganda, and drug regimens, the most significant corre-
late of first line treatment failure appeared to be the use 
of 3TC. These results imply that associations between 
HIV-1 subtypes and first-line treatment failure, if any, 
were not driven by drug exposure or resistance.

Clinical differences among HIV‑1 subtypes
Plasma viral load (pVL) measurements were available 
for 579 baseline samples and 962 failure samples. The 
mean difference in pVL between baseline and failures 
samples was 0.44 log10 units, and statistically significant 
(Table  1). There was not significant variation in log10 
pVL among subtypes at baseline (ANOVA, P = 0.85 ), 
but marginally significant variation in failure samples 
( P = 0.04 ; Additional file  1: Figure  S3). Within treat-
ment failures, individuals with subtype C infections 
tended to have lower pVL than the other subtypes 
(mean difference = − 0.38 log10 units; Student’s t test, 
95% CI = [ − 0.75 , − 0.02]); this result is consistent with 
previous work in this population [16]. CD4 cell counts 
were only available for 141 failure samples, and no 
counts were available for baseline samples (Table  1). 
We observed no significant variation in CD4 among 
subtypes (ANOVA, P = 0.09).
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Fig. 2  Genotype susceptibility scores (GSS) by group and HIV-1 subtype. GSS was calculated from the Stanford resistance scores and drug 
regimens; to facilitate visualization, the scores were rounded to the nearest integer and capped at a maximum of 3 (highly susceptible genotype, 
green). Each set of stacked bars represents the proportion of sequences in each GSS category for a given subtype. The area of each set of stacked 
bars is proportional to the total number of individuals in each subtype category
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indicate a putative directional effect with MPP > 80%; undirected 
edges have double arrowheads
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Fewer recombinants among treatment failures
Table 1 and Additional file 1: Figure S4 depict the over-
all distribution of HIV-1 subtypes between baseline 
and failure samples in the entire database ( n = 4154 ). 
We found that SCUEAL-defined A/D recombinants 
( n = 302 ) were significantly less frequent in failure sam-
ples (Fisher’s exact test, odds ratio OR = 0.53 , 95% CI 
= [0.40, 0.69]). A similar association was obtained with 
REGA-defined A/D recombinants ( n = 284 , OR = 0.34 
[0.25, 0.46]); for brevity, the remainder of our analysis 
will utilize the SCUEAL predictions. To assess whether 
this effect was caused by combining the Uganda clini-
cal and study population data with published sequences 
from the Stanford HIVdb database, we repeated our 
analysis excluding the HIVdb data. The frequency of 
A/D recombinants remained significantly lower among 
failure samples in this reduced data set ( OR = 0.58 
[0.41, 0.80]). We also observed that sequences classified 
by SCUEAL into the ‘other’ category, which comprises 
subtype U (unclassified) and inter-subtype recom-
binants other than A/D, were significantly more likely 
to occur in failure samples ( OR = 1.3 [1.07, 1.49]; Addi-
tional file  1: Figure  S4). However, the reproducibility 
of classifying sequences into the ‘other’ category was 
low (Additional file 1: Table S2). Unexpectedly, subtype 
U sequences alone were significantly more frequent 
among failure samples ( OR = 2.0 [1.38, 3.03]); no such 
association was observed for sequences categorized as 
subtype A ( OR = 1.07 [0.94, 1.21]). Thus, although the 
subtype U sequences appear to be evolutionarily related 
to subtype A (Additional file 1: Figure S2), our data sug-
gest that these unclassified variants may be associated 
with increased rates of first-line treatment failure.

The number of inferred breakpoints in A/D recom-
binants was significantly negatively associated with first-
line treatment failures (binomial GLM effect estimate 
= − 0.39 [ − 0.67 , − 0.12 ] log odds per breakpoint). For 
instance, HIV-1 sequences with more than two recombi-
nation breakpoints were about 60% less likely to appear 
in failure samples than expected by chance. This effect 
was not influenced by sequence length (likelihood-ratio 
test, P = 0.94 ). We also found that the number of break-
points remained significantly lower in failure samples 
when we expanded our analysis to the entire database 
including non-recombinants and other inter-subtype 
recombinants. Since this distribution included a large 
class of zero breakpoints, we fit a zero-inflated Poisson 
model to these counts [32]. We found that treatment fail-
ures had a significantly greater chance of carrying a non-
recombinant strain (log odds = + 0.16 , 95% CI = [0.02, 
0.31]) and a significantly reduced number of breakpoints 

when carrying a recombinant strain (log odds = − 0.12 , 
[ − 0.2 , − 0.03 ]; Table 1).

Since we found a significantly lower frequency of A/D 
recombinants in the sample population of first-line 
treatment failures, we further examined associations 
between HIV-1 recombination and treatment failures. 
First, we visualized the distribution of inferred recom-
bination breakpoints and assignments of recombinant 
fragments to HIV-1 subtypes A and D (Additional 
file  1: Figure  S5). This plot implies a complex evolu-
tionary history of A/D recombinants in Uganda, with 
recombinants arising from multiple events. Next we 
examined whether particular A/D recombinant frag-
ments were more associated with first-line treatment 
failures using a series of nucleotide-level association 
tests along the length of the HIV-1 pol sequence. This 
analysis revealed that associations between subtype 
A-derived fragments and treatment failures tended to 
cluster towards the 3′end/C-terminus of RT, just down-
stream of the resistance associated sites in RT (Fig. 4).
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Discussion
This study represents the largest database of first-line 
treatment failures in Uganda to date, drawing from every 
available study cohort associated with the JCRC. In a pre-
vious cross-sectional study of a clinical HIV database in 
Uganda, we reported a statistical association between 
HIV subtype D infections and treatment failures on sec-
ond-line and salvage therapies ( n = 843 ) [33], which are 
generally associated with higher failure rates than first-
line therapies [34]. Furthermore, suboptimal modification 
of drug regimens in second-line and salvage therapies 
may allow substantial virus replication to amplify incipi-
ent differences among HIV-1 subtypes. In this study, we 
observed limited evidence for significant variation with 
respect to genotype susceptibility scores and plasma viral 
loads among HIV-1 subtypes within the first-line treat-
ment failures. We acknowledge some insurmountable 
limitations in this retrospective cross-sectional study of 
all available records of first-line treatment failures in the 
JCRC databases. For instance, matched baseline and fail-
ure samples or duration of treatment were not available 
for the majority of cases, which would have permitted a 
longitudinal analysis of these populations. Moreover, our 
Bayesian network analysis was limited to the n = 1750 
(42%) records with complete information on drug regi-
mens and sampling region.

Examining the marginal distribution of subtypes and 
failures in the entire database ( n = 4154 ), we recovered a 
significant and unexpected negative association between 
A/D recombinants and first-line treatment failures (Addi-
tional file 1: Figure S4). We found no significant associa-
tion of other inter-subtype recombinants with first-line 
treatment failures, although the relatively low frequencies 
of such recombinants in the database limited our power 
to detect such associations. Inter-subtype HIV-1 recom-
binants, estimated to comprise roughly 20% of all infec-
tions worldwide, are increasingly significant to global 
public health [35]. The effective rate of recombination in 
HIV is comparable to the mutation rate [36]. Recombina-
tion of divergent subtypes does not necessarily confer a 
fitness advantage to the virus; for instance, it may disrupt 
co-adapted combinations of genetic differences unique to 
the respective subtypes [37]. We note that in the field of 
HIV-1, the term ‘fitness’ tends to be reserved for the rep-
lication of the virus in the absence of treatment. However, 
variation in viral fitness is biologically and clinically rele-
vant even in the context of treatment, which constitutes a 
shift in the environment that modulates the fitness of dif-
ferent genotypes. Since a large number of genetic differ-
ences are fixed among subtypes, recombination between 
specific subtypes will predictably generate certain geno-
type combinations. Hence, even if recombination among 
subtypes has no net effect on virus fitness, it is reasonable 

for recombinants of particular subtypes (e.g., A and D) to 
be, on average, less fit or more fit than their respective 
parental variants. Several groups have constructed inter-
subtype recombinants and performed functional assays 
or competitive growth experiments in  vitro against the 
parental strains [38, 39]. Overall, the experimental results 
are equivocal with some recombinants displaying a slight 
but significant fitness advantage over the parental strains, 
while other recombinants are less fit [40]. Our results 
predict that recombination experiments in pol between 
subtypes A and D should tend to produce less fit recom-
binant viruses on average, and that variation in fitness 
among recombinants may be predictable from the com-
position of the recombinant HIV-1 pol gene sequence.

Overall, our findings are consistent with findings 
suggesting rates of disease progression among HIV-1 
subtypes does not have major impact on response to 
treatment [6, 16]. With any difference in treatment regi-
men, our Bayesian network analysis on a subset of the 
data indicates that specific drug usage would mask any 
subtype effect. Only by expanding to the entire database 
and masking the drug regimens do we detect evidence 
of reduced failures in patients infected with A/D recom-
binants. Based on the analyses and models described 
above, it is remarkable to observe that relatively frequent 
recombination between the prevalent subtypes A and D 
may actually promote the effectiveness of first-line treat-
ment regimens in Uganda.

Additional file

Additional file 1. Additional text, figures and tables are provided in sup‑
port of results in the main text, including methodological details on HIV-1 
sequence processing.
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