
Liu and Ostrowski ﻿AIDS Res Ther  (2017) 14:43 
DOI 10.1186/s12981-017-0165-8

REVIEW

Development of targeted adjuvants 
for HIV‑1 vaccines
Jun Liu1* and Mario Ostrowski1,2,3*

Abstract 

Finding new adjuvants is an integrated component of the efforts in developing an effective HIV-1 vaccine. Compared 
with traditional adjuvants, a modern adjuvant in the context of HIV-1 prevention would elicit a durable and potent 
memory response from B cells, CD8+ T cells, and NK cells but avoid overstimulation of HIV-1 susceptible CD4+ T cells, 
especially at genital and rectal mucosa, the main portals for HIV-1 transmission. We briefly review recent advances in 
the studies of such potential targeted adjuvants, focusing on three classes of molecules that we study: TNFSF mol-
ecules, TLRs agonists, and NODs agonists.
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Background
More than three decades after human immunodeficiency 
virus 1 (HIV-1) was identified as the cause of AIDS, we 
still do not have an effective vaccine to stymie its global 
spread [1]. Barriers to developing an effective HIV-1 vac-
cine include the following: (1) HIV-1 mutates rapidly 
and has a tremendous genetic diversity. In this regard, 
broadly neutralizing antibodies (bNAbs) can neutral-
ize a broad range of HIV-1 isolates, but we do not know 
how to induce such bNAbs with a vaccine [2]. Vaccines 
that induce non-broadly neutralizing HIV-1 Env-binding 
antibodies can afford partial protection against HIV-1/
SHIV infection, but their efficacy needs to be substan-
tially improved for clinical use [3, 4]. (2) All HIV-1 enve-
lope (Env) based vaccine candidates can only induce a 
short-lived antibody response. This is in striking contrast 
to vaccines currently in clinical use and may severely 
limit the long-term efficacy of HIV-1 vaccines [5–8]. 
The mechanisms underlying this short duration of Env-
antibody responses are not clear yet, but might be due to 
the failure of the Env glycoprotein to induce long-lived 
plasma cells [9, 10]. (3) HIV-1 is a rapidly replicating 
lentivirus that can establish latent infection soon after 

infection [11]. Thus an effective HIV-1 vaccine should 
elicit memory immune responses that can be mobilized 
fast (probably within a few days of infection) and suf-
ficiently to block HIV-1 transmission through genital 
and rectal mucosa. Cytomegalovirus (CMV)-vectored 
HIV-1 vaccine might be able to elicit such a persistent 
and strong immune response [12], but we do not know if 
and how other vaccine platforms can elicit such immune 
responses, especially at genital and rectal mucosa. (4) 
CD4+ T cells play a pivotal role in forming memory 
immune response but are also target cells of HIV-1. An 
effective HIV-1 vaccine should induce potent cellular and 
humoral memory immune responses but avoid or limit 
stimulation of HIV-1 susceptible CD4+ T cells, which is 
highlighted by the Step and Phambili clinical trials results 
[13, 14]. Overcoming these barriers requires a multidis-
ciplinary and multipronged approach, such as design of 
novel immunogens, development of better adjuvants, 
testing of multiple vaccination routes/schedules, and 
invention of novel delivery vehicles. Recent advances in 
immunology should be able to replace traditional adju-
vants, such as alum, with an adjuvant that can preferen-
tially promote protective responses from B cells, CD8+ 
T cells, and/or natural killer cells (NK), but not acti-
vate CD4+ T cells. Here, we will briefly review recent 
advances in the studies of such potential targeted adju-
vants for HIV-1 vaccines. A thorough review is out of 
the scope of this short paper, and we will focus on three 
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classes of molecules that we are studying: tumor necrosis 
factor superfamily (TNFSF) molecules, toll-like receptors 
(TLRs) agonists, and nucleotide-binding oligomerization 
domain-containing proteins (NODs) agonists.

TNFSF molecules‑CD40L, BAFF, and APRIL
TNFSF molecules are type II transmembrane proteins 
that have a conserved tumor necrosis factor homology 
domain at their C-termini [15]. Many TNFSF members 
are immune costimulatory molecules, among which 
CD40 ligand (CD40L), B cell activating factor (BAFF), 
and a proliferation-inducing ligand (APRIL) are pivotal 
for B cell costimulation. CD40L expressed on activated 
CD4+ T cells binds CD40 on B cells to promote B cell 
proliferation and survival, antibody isotype switching, 
and antibody affinity maturation. BAFF and APRIL are 
two closely related TNFSF molecules that are impor-
tant for B cell development and differentiation [16, 17]. 
BAFF binds to three receptors on B cells: BAFF receptor 
(BAFFR), transmembrane activator and calcium modula-
tor and cyclophilin ligand interactor (TACI), and B cell 
maturation antigen (BCMA) while APRIL binds to TACI 
and BCMA. BAFF–BAFFR interaction provides a key 
survival signal for mature B cells [16, 17]. The APRIL–
BCMA pathway is essential for long-term survival of 
bone marrow plasma cells [18, 19]. BAFF and APRIL 
can also induce antibody isotype switching independent 
of CD40L [20]. Notably, BAFF and APRIL were shown 
to be essential for IgA production. The CD40L-CD40 
pathway is also important for promoting the CD8+ T cell 
response. Binding of CD40 on immature DC by CD40L 
activates and matures them, which are “licensed” to acti-
vate CD8+ T cells.

Many reports have been published on testing CD40L 
as adjuvant for HIV-1 and Simian immunodeficiency 
virus (SIV) vaccines. We reported CD40L expressed 
from a canarypox vector (ALVAC) enhanced memory 
polyfunctional cytotoxic T cell (CTL) responses elic-
ited by an ALVAC HIV-1 vaccine in mice [21]. Kwa et al. 
found CD40L augmented SIV-specific humoral and cel-
lular immune responses, improved protection against 
SIV infection, and strengthened control of SIV replica-
tion in rhesus macaques receiving DNA prime/Modified 
Vaccinia Ankara (MVA) boost SIV vaccine [22, 23]. We 
recently found CD40L mainly enhanced SIV Env-specific 
antibody responses elicited by an ALVAC prime-Env pro-
tein boost SIV vaccine in monkeys (Liu et al. manuscript 
in preparation). Although further study is required, these 
results indicate CD40L could be a potential adjuvant 
capable of targeting B cells and CD8+ T cells.

BAFF and APRIL were also reported to enhance 
immunogenicity of HIV-1 vaccines. Gupta et  al. found 
plasmid expressing multimeric soluble BAFF or APRIL, 

when co-administered with plasmid expressing IL-12, 
increased titer and avidity of gp120-binding antibod-
ies and titer of neutralizing antibodies against a tier-1 
and an autologous tier-2 HIV-1 virus in mice receiving 
a DNA prime/protein boost HIV-1 gp140 vaccine [24]. 
Melchers et al. made trimeric fusion constructs of HIV-1 
gp140 with CD40L, BAFF, and APRIL and found only the 
gp140-APRIL construct significantly enhanced Env-bind-
ing antibodies in rabbits [25]. These previous reports just 
tested antibodies in blood. We found BAFF and APRIL 
increased HIV-1 Env-binding antibodies at mucosa in 
mice (Liu et al. manuscript in preparation).

TLRs agonists
TLRs are type I transmembrane proteins belonging to 
pattern recognition receptors (PRRs), a large family of 
molecules that can sense “danger signals” (pathogen-
associated molecular patterns and damage-associated 
molecular patterns) to activate innate immune cells, 
which then initiates adaptive immune responses through 
production of cytokines and chemokines and antigen 
presentation. Ten TLRs have been identified in human 
and 12 in mouse, each of which has distinct ligands 
[26]. Synthetic TLRs agonists, especially TLR7, TLR8, 
and TLR9 agonists, have been tested as adjuvants for 
HIV-1/SIV vaccines in animal studies. Moody et  al. 
compared the effect of TLR4 agonist (lipid A), TLR7/8 
agonist (R848), and TLR9 agonist (oCpG), either alone 
or in pairwise combination, on antibody responses elic-
ited by a gp140 protein vaccine in monkeys [27]. They 
found combination of R848 and oCpG helped the vac-
cine induce the strongest Env-binding antibodies, 
including neutralizing antibodies and antibodies medi-
ating antibody-dependent cell-mediated cytotoxicity 
(ADCC). Based on previous studies, the authors sug-
gested combination of R848 and oCpG might enhance 
antibody responses by suppressing type 1 T helper 
cells (Th1). Kasturi et  al. used combination of TLR4 
and TLR7/8 agonist (MPL and R848) encapsulated in 
poly(lactic-co-glycolic acid) (PLGA) nanoparticles as 
adjuvant for SIV Env plus Gag protein vaccine or SIV 
virus-like particle (VLP) vaccine [28]. They reported that 
PLGA (MPL + R848) helped the SIV vaccine elicit per-
sistently higher SIV Env binding IgG and IgA in blood 
and at mucosa, more long-lived Env-specific plasma cells 
in bone marrow and draining lymph nodes, and higher 
Env-specific CD4+ T cell responses than alum. Only 
PLGA (MPL +  R848) adjuvanted SIV vaccines signifi-
cantly protected monkeys expressing a restrictive tripar-
tite motif-containing protein 5α (TRIM5α) allele from a 
heterologous SIV intravaginal challenge, and the protec-
tion correlated with SIV Env-binding IgG in blood and 
vaginal secretion.
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We recently reported that self-assembling peptide 
nanofibers could co-deliver an HIV-1 CD8+ T cell epitope, 
SL9, and TLR7/8 agonist R848 to activate human mono-
cyte-derived dendritic cells (MDDCs) in vitro and elicited 
stronger SL9-specific CD8+ T cells in HLA-A2 trans-
genic mice [29]. EAK16-II is a 16mer peptide that can 
self-assemble to form nanofibers in aqueous solution. We 
found SL9-EAK16-II fusion peptide could co-assemble 
with R848 and TLR7 agonist R837 to form nanofibers. 
The nanofibers were taken up by MDDCs into endosomes, 
where TLR7 and TLR8 are localized. Consequently, 
SL9-EAK16-II nanofibers with R848 or R837 activated 
MDDCs, which elicited stronger SL9-specific CD8+ T 
cell responses in vitro than non-nanoformed SL9 peptide. 
R848 was more potent than R837 in helping the nanofibers 
to induce the SL9-specific CD8+ T cell responses in vitro, 
possibly due to its synergistic activation of both TLR7 and 
TLR8 in DCs. The mechanisms underlying the enhanced 
SL9-specific CD8+ T cell induction by SL9-EAK16-II 
nanofiber in vitro and in vivo are still under investigation, 
but are possibly related to its increased stability due to 
resistance to extracellular and intracellular proteinases and 
peptidases (Liu et al. unpublished data).

NODs agonists
NODs are intracellular PRRs [30]. There are two closely 
related NODs, NOD1 and NOD2, all of which contain-
ing N-terminal caspase recruitment domain(s) (CARD) 
(one for NOD1 and two for NOD2) to activate down-
stream signaling molecules, a C-terminal leucine-rich 
repeat domain to recognize microbial molecules, and 
a central nucleotide-binding oligomerization domain 
to bind nucleoside triphosphate. The ligands of NODs 
are components of peptidoglycan in bacterial cell wall. 
NOD1 ligand is γ-d-glutamyl-mesodiaminopimelic 
acid (iE-DAP) present in some Gram-positive bacteria 
and all Gram-negative bacteria. NOD2 ligand is mura-
myl dipeptide (MDP) found in all Gram-positive and 
Gram-negative bacteria. These ligands bind and acti-
vate NODs, which finally activates nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) and 
activator protein 1 (AP-1), leading to autophagy and pro-
duction of pro-inflammatory cytokines, chemokines, and 
anti-microbial factors. Activation of NOD1 and NOD2 
primes a Th2-polarized adaptive immune response with 
potent antibody responses in mice [31], which makes 
NODs agonists attractive as adjuvants for HIV-1 vac-
cines, since Th2 cells are much less susceptible to HIV-1 
infection than Th1 and Th17 [32]. Pavot et  al. reported 
NOD1 and NOD2 agonists encapsulated in polylactic 
acid (PLA) nanoparticles enhanced mucosal antibody 
responses elicited by HIV-1 p24 coated on PLA nano-
particles in mice [33]. Both NOD1 and NOD2 agonists 

augmented p24-specific IgG in feces after subcutaneous 
vaccination, compared with p24-alum or PLA-p24. Only 
NOD2 agonist significantly enhanced p24-specific IgA 
in feces and vaginal lavage after oral or intranasal vacci-
nation, respectively, and p24-specific IgG in vaginal lav-
age after intranasal vaccination. These findings suggest 
NOD2 agonist may be better than NOD1 agonist as an 
adjuvant to elicit mucosal antibody responses. We found 
MDP could enhance mucosal gp140-specific antibody 
response in mice (Liu et al. unpublished data).

Conclusions and perspectives
Recent advances in the development of targeted adju-
vants should help HIV-1 vaccines elicit potent and dura-
ble memory responses of B cells, CD8+ T cells, NK cells, 
etc. while avoiding generation of abundant HIV-1 suscep-
tible CD4+ T cells at genital and rectal mucosa. An ideal 
adjuvant should preferentially activate B cells, CD8+ T 
cells, and NK cells other than CD4+ T cells. Using tar-
geted delivery vehicles, such as nanoparticles coated with 
specific ligands for the receptors on these cells, may fur-
ther increase the targeting of the adjuvants. More stud-
ies are still needed to find the best targeted adjuvant for 
HIV-1 vaccine before clinical trials.
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