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Combination antiretroviral therapy and chronic
HIV infection affect serum retinoid
concentrations: longitudinal and cross-sectional
assessments
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Abstract

Background: Several lines of evidence suggest that retinoids (retinol-ROL or vitamin A, and its active metabolites,
retinoic acids-RAs) play important pathogenic roles in HIV infection and combination antiretroviral therapy (cART)-
related events. We previously reported that antiretrovirals alter RAs synthesis in vitro. We hypothesised that in vivo
serum retinoid concentrations are affected by both cART and HIV infection. This might explain several clinical and
laboratory abnormalities reported in HIV-infected patients receiving cART.

Methods: The effects of optimal cART and chronic HIV on serum retinoids were firstly assessed longitudinally in 10 HIV-
infected adults (group1 = G1): twice while on optimal cART (first, during long-term and second, during short term cART)
and twice during 2 cART interruptions when HIV viral load (VL) was detectable. Retinoid concentrations during optimal
long term cART in G1 were compared with cross-sectional results from 12 patients (G2) with suboptimal cART
(detectable VL) and from 28 healthy adults (G3). Serum retinoids were measured by HPLC with ultraviolet detection.
Retinoid concentrations were correlated with VL, CD4" T- cell count and percentages, CD8*38" fluorescence,
triglycerides, cholesterol and C-peptide serum levels.

Results: During optimal cART, G1 participants had drastically reduced RAs (0.5 + 0.3 pg/dL; P < 0.01) but the
highest ROL (82 + 3.0 pg/dL) concentrations. During cART interruptions in these patients, RAs slightly increased
whereas ROL levels diminished significantly (P < 0.05). G3 had the highest RAs levels (7.2 + 1.1 ug/dL) and serum
ROL comparable to values in North Americans. Serum ROL was decreased in G2 (37.7 = 3.2 ug/dL; P < 0.01). No
correlations were noted between RA and ROL levels or between retinoid concentrations and CD4" T- cell count,
CD8"38" fluorescence, VL. ROL correlated with triglycerides and cholesterol in G1 (1, = 0.8; P = 0.01).

Conclusions: Serum RAs levels are significantly diminished by cART, whereas ROL concentrations significantly
decreased during uncontrolled HIV infection but augmented with optimal cART. These alterations in retinoid
concentrations may affect the expression of retinoid-responsive genes involved in metabolic, hormonal and
immune processes and be responsible for some adverse events observed in HIV-infected persons treated with
antiretrovirals. Further studies should assess concomitant serum and intracellular retinoid levels in different clinical
situations in larger, homogenous populations.
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Introduction

Retinoids (retinol-ROL- or vitamin A, and its main active
metabolites, retinoic acids-RAs) play key roles in multiple
human processes [1-3]. ROL is reversibly oxidized intra-
cellularly to retinal by alcohol and short-chain dehydro-
genases, whereas retinal is irreversibly oxidized by
cytosolic retinal aldehyde dehydrogenases (RALDHs) to
RAs, mainly all-frans RA and 9-cis RA [1-3]. Intracellular
concentrations of RAs are tightly regulated by synthesizing
and catabolizing enzymes and by their binding to cytosol
RAs-binding proteins (CRABPs) [2,4]. RAs enter the
nucleus, bind and activate nuclear RAs receptors (RARSs)
or/and retinoid X receptors (RXRs) [3-5]. All-trans RA is
the physiological ligand for RAR, whereas 9-cis RA is a
high-affinity ligand, in vitro, for RXRs and for RAR [4,5].
However, in vivo, biological activity of 9-cis-RA is not
firmly established [3-5]. Once activated by their ligands,
these nuclear receptors (ligand-activated transcription
factors) bind to RA response elements (RAREs) in the pro-
moter/enhancer of a multitude of genes involved in lipid,
glucose and hormonal metabolism, innate and adaptive
immunity [1-6]. RXRs also form heterodimers with other
nuclear receptors acting as transcription factors for other
multiple genes involved in metabolic, hormonal and
immune processes [4-9]. Responses in gene expression
depend on intracellular RAs concentrations [4,5,9]. Altera-
tion of retinoid concentrations could have, therefore, mul-
tiple consequences.

RAs are used therapeutically for promyelocytic leukemia,
T-cell lymphoma, psoriasis, severe nodular acne, and
Kaposi’s sarcoma [6,10-12]. Several adverse effects have
been reported with their use, such as desquamative cheili-
tis, xerosis, alopecia, pyogenic granuloma of nail folds, and
hyperlipidemia [11,12]. Similar features, called retinoid-
like adverse effects, have been observed during combina-
tion antiretroviral therapy (cART), especially when certain
HIV protease inhibitors (PIs) were included in the thera-
peutic regimen [12-14]. These clinical manifestations are
often associated with morphological and metabolic
abnormalities [13-15]. It has been proposed that Pls inter-
fere with retinoid and lipid metabolism [15], and heigh-
tened retinoid signalling has been indirectly attributed to
the protease inhibitor indinavir [16].

We demonstrated that RAs synthesis is altered in vitro
by antiretrovirals which increased RALDH1’s activity
and expression, the main RA-synthesising enzyme [17].

Although ROL status has been evaluated in HIV infec-
tion [18,19], no investigation of serum RAs has been
undertaken thus far, in spite of their recognized implica-
tions in HIV infection and several cART-related events.

Here, we report the effects of both long-term and
short term optimal cART (i.e. HIV viral load-VL- below
detection limit), and of HIV during cART interruptions
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(when VL is detectable) on retinoid concentrations in
HIV-infected adults from prospective, longitudinal
assessments in the same study participants (an intra-
subject approach). The effects of optimal cART on reti-
noids in this group of patients were compared with
results in patients with suboptimal cART (repeated,
detectable VL) and healthy adult volunteers. Correla-
tions were made with immuno-virological (i.e. CD4" cell
count and percentages, CD8"38" fluorescence index and
VL) results as well as with main metabolic parameters
(cholesterol, triglycerides and, in HIV-infected persons,
C-peptide), which could be affected by cART or HIV.
We found that both uncontrolled HIV infection and
cART affect retinoid concentrations in HIV-infected
adults. These changes in retinoid concentrations might
explain several HIV- and cART-related clinical events,
as well as some metabolic, hormonal and immune
abnormalities, reported in HIV-infected individuals
receiving cART.

Methods

Participants

Prospective, longitudinal assessments were undertaken in
10 HIV-infected participants at a Canadian HIV Trials
Network (CTN) study on therapeutic vaccination and
cART interruptions (group 1 = G1). This was a 5% year
proof-of-concept trial (CTN-140) conducted between
2000 and 2006 and extended to 2010 for long-term
follow-up [Toma E. ef al.: manuscript in preparation]. Its
main objective was to explore whether cART exposure
could be minimized by therapeutic vaccination with
Remune™ initiated after targeting HIV reservoirs (by
intensifying an already optimal cART), and after reducing
immune activation using hydroxyurea for 5 months before
the first dose of Remune™. Therapeutic vaccine was
administered every 3 months for 3 years and individua-
lized intermittent cART interruptions and cART reinitia-
tions were performed according to predefined criteria.
The primary end-point for CTN-140 was the time spent
without antiretrovirals. Viro-immunological effects and
clinical outcome were secondary end-points.

We have taken advantage of the design of this trial to
explore longitudinally in the same patients the effects of
both cART and HIV (during cART interruptions) on reti-
noid concentrations at 4 time points: ON 1 = during
intensification period of a prolonged and optimal cART
(long-term effect); OFF 1 = during a first cART interrup-
tion when VL was detectable; ON 2 = on re-initiated
cART when VL was again below detection limit (short-
term effect); OFF 2 = during a second cART interruption
when VL was again detectable.

Serum retinoids concentrations in G1 during cART
intensification (ON 1) were compared with those in 12
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HIV-infected patients with suboptimal cART having
repeated detectable VL, followed at the same outpatient
clinic (G2) and 28 healthy adult volunteers (G3). To
reduce selection bias, patient recruitment for G2 and
healthy volunteers for G3 was undertaken in consecutive
order (either when they came to the clinic or as they
agreed to participate, respectively) in the months pre-
ceding serum retinoid assessments. Since this was an
exploratory work, we did not match the participants by
gender or by age. However, a separate analysis was per-
formed for males only (10 in each group) and between
healthy males and females volunteers.

This study was conducted according to the guidelines
laid down in the Declaration of Helsinki and all proce-
dures involving patients and healthy volunteers, the pro-
tocol, consent forms and amendments were approved by
the Research Ethics Committee of the Centre Hospita-
lier de 'Université de Montréal (CHUM). All partici-
pants provided written, informed consent.

Serum retinoid levels

Blood was collected after overnight fasting in vacutainer
tubes containing a silica gel-based clotting activator and
previously wrapped with aluminium foil to minimize light
exposure. The samples were processed in a dark room,
and serum was obtained by centrifugation at 2 620 g at
4'C, and then stored in 1.5 ml brown Eppendorf cryotubes
at -80 C until assayed. Retinoids from the serum samples
were extracted by butanol/acetonitrile (equal volumes)
essentially as described by McClean et al. [20] except that
the method was applied for smaller sample volumes
[21-23]. At the time of assay, samples stored at -80'C were
defrosted on ice and centrifuged for 10 min at 4 C at
2 620 g to obtain clear supernatants. 200 pl of serum was
transferred to a borosilicate tube wrapped in aluminium
foil, and 200 pl of butanol/acetonitrile (1:1) was added.
The mixture was vortexed for 1 min and vortexed again
for 30 s. The extraction mixture was centrifuged at 2 620
g for 15 min in a Sorval RC3C Plus centrifuge pre-cooled
to 4'C. 100 pl of clear supernatant was injected into the
HPLC system. Recovery studies were performed with the
addition of retinoids (5-50 ng/100 ul range) to 3 separate
serum samples. Retinoid recovery in this extraction
method was approximately 99% [21-23].

The HPLC system consists of a Shimadzu Model LC-
10ADVP (Mandel, Guelph, ON, Canada) equipped with
a SIL-HTC autosampler and cooling system [22-24].
Retinoids were separated on a Phenomenex 10-ODS
analytical column (250 x 4.5 mm, Phenomenex, Inc.,
Torrance, CA), and eluted with a mobile phase of aceto-
nitrile: water (60:40) containing 10 mM ammonium
acetate at a flow rate of 1.2 mL/minute. Retinoids were
detected in a photodiode array detector (Shimadzu
model SPD-M10AVP) which collected spectra between
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200 and 500 nm. Calibration curves for retinoids were
obtained with standard, pure solutions of RAs. The
detection limit for ROL and RAs was 2 pg [22,23]. Char-
acteristic ultraviolet spectra and retention times for reti-
noids were identified, and peak areas were measured at
Amax-330 in @ Shimadzu SZ-228 data system.

Plasma viral load

Plasma viral load was quantified by the Amplicor HIV-1
Monitor Test, version 1.5 (Roche Diagnostic Systems,
Inc., Branchburg, NJ) with the lower limit of detection
of 50 (1.7 logyp) HIV-1 RNA copies/mL.

Lymphocyte phenotyping

Lymphocyte phenotyping was performed in a FACS
Calibur flow cytometry system (Becton Dickinson, San
Jose, CA) after staining with the following monoclonal
antibodies: anti-human CD3-FITC, CD8-PE, CD4-APC,
CD45-PerCP, anti-human CD3-FITC, CD16-PE, CD56-
PE, CD19-APC, CD45-PerCP and anti-human CDS8-PE,
CD38-FITC, CD45-PerCP (BD Biosciences, Mississauga,
ON, Canada). CD38 density expression on CD8" was
reported as median relative fluorescence index.

Metabolic assessments
Fasting serum cholesterol, triglycerides and C-peptide
were measured by standard techniques.

Statistical analysis

We used only nonparametric statistical tests because we
could not assume a normal distribution of data and the
sample sizes were not large enough to rely on tests for
normality. Correlations between retinoid concentrations
and immuno-virological (i.e. CD4" cell count and percen-
tages, CD8"38" fluorescence index and VL) and meta-
bolic data (cholesterol, triglycerides and, in HIV-infected
persons, C-peptide), were analyzed by Spearman’s rank
test. Differences between groups were determined by the
Mann-Whitney rank test when the 2 HIV-infected
groups were compared, and by the Kruskal-Wallis test
followed (if P < 0.05) by Dunnett’s multiple post-test
comparisons when the 3 groups were compared. Changes
over time in G1 were assessed by using Friedman’s non-
parametric test, followed (if P < 0.05) by Dunnett’s post
test. Statistical significance was accepted when P < 0.05.
Statistical analyses were performed and graphic presenta-
tions created, using GraphPad Prism version 4.02 for
Windows (GraphPad Software, Inc., San Diego, CA).

Results
Baseline descriptors are presented in Table 1.

Group 1 included all 10 (all male) participants in the
CTN-140 study. Their cART consisted of D4T, 3TC,
ddI plus indinavir (4 participants), ritonavir/saquinavir
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Table 1 Baseline descriptors
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Descriptor Group 1 Group 2 Group 3 P value*
N =10 N =12 N =28
Age (years) P = 0.06
Median (range) 41.5 (36-51) 484 (354-535) 36.5(21.0-63.0)
Mean (SEM) 42.7 (1.8) 47.5(14) 386 (24)
95% Cl 387, 46.7 44.5, 506 336,435
Triglycerides (mmol/L)** P < 0.01.G1vsG3
P < 0.01:G2 vs.G3
Median (range) 23 (1.1-4.6) 2.0 (0.7-54) 0.8 (0.4-3.0)
Mean (SEM) 24 (03) 25 (04) 1.1(0.1)
95% Cl 1.7, 3.1 15,34 08,13
Cholesterol (mmol/L)** P > 0.05
Median (range) 55 (39-77) 4.0 (1.5-6.4) 4.8 (3.2-7.0)
Mean (SEM) 53 (04) 4.0 (04) 48(0.2)
95% Cl 45,62 32,47 45,52

* P values using Kruskal-Wallis test followed by Dunnett’s test for multiple comparisons

** For conversion from Sl units to metric: for triglycerides mmol/L x 88.57 and for cholesterol mmol/L x 38.67.

(4 patients), nelfinavir (1 patient), efavirenz (1 patient).
Median (range) time duration on cART and off cART
periods when retinoids were quantified was: ON 1 =
37.5 (22-48) months; OFF 1 = 16 (12-149) weeks; ON
2 = 21 (14-33) weeks; and OFF 2 = 23 (11-45) weeks.
The duration of ON 2 was significantly shorter than
that of ON 1 because the criteria to interrupt cART in
CTN 140 study were an undetectable VL and CD4" T-
cell count higher than 200 cells/mL, twice at 1 month
interval. This allowed us to assess the effects of short-
term optimal cART, in addition to the effects of long-
term optimal cART during ONI1.

Group 2 included 12 (10 male) HIV-infected adults
with suboptimal cART (repeated detectable VL) conse-
cutively seen at the same outpatient clinic: one who just
stopped a suboptimal cART and 11 receiving 2 nucleo-
side reverse transcriptase inhibitors (NRTIs) plus nelfi-
navir (1 patient), a third NRTI (1 patient) or ritonavir
(r)-boosted PIs (9 cases). The baseline descriptors of the
2 groups of HIV-infected adults are presented in Table
2. The 2 groups were similar in age, duration of HIV
infection, duration of cART and body mass index (BMI).
However, they significantly differed in terms of CD4"
T-cell count and percentage, CD8"38" fluorescence
index and VL, illustrating the differences between opti-
mal versus suboptimal cART.

Group 3 comprised 28 (10 males) healthy adult volun-
teers (4 of the authors, laboratory staff, health-care
workers, pharmaceutical representatives). They were
younger than HIV-infected persons and had significantly
lower triglyceride levels than GI.

Serum RAs
The serum RAs concentrations in the 3 groups are
shown in Figure 1.

Serum RAs concentrations were statistically signifi-
cantly lower in G1 while on long-term optimal and
intensified cART (ON 1) in comparison to healthy
adults who had the highest RAs values. Serum RAs were
also markedly lower than in G2. At subsequent mea-
surements (twice when off cART and once when re-
initiated cART was fully suppressive) in G1 participants
RAs levels did not changed significantly (P = 0.8), but a
great interindividual variability was observed. However,
the values in 75% percentile showed decreased levels
during therapy and increased values while off treatment:
ONI1 = 1.3 pg/dL; OFF1 = 9.1 pg/dL;ON2 = 3.98 pg/dL
and OFF2 = 7.96 pg/dL.

No correlation was found between serum RAs concen-
trations and VL, CD4" T-cell count or the CD8"38"
fluorescence index in both groups of HIV-infected
patients.

RAs did not correlate with fasting blood cholesterol or
triglycerides level, which could be affected by cART or
HIV infection. However, a significant correlation (rs =
0.8, P = 0.009) was found with C-peptide levels during
re-initiated cART (ON 2) in G1.

Serum ROL
Serum ROL concentrations are presented in Figure 2.
G1 participants had the highest ROL levels (82 + 3 pg/
dL) but not significantly higher from those in G3 that
were within reported values for North Americans. ROL
concentrations were significantly decreased in G2. In G1,
ROL declined during cART interruptions when VL was
detectable. Although ROL concentrations rose during
cART resumption (ON 2) they did not reach initial values,
and decreased significantly (P < 0.05) during the second
cART interruption. In G1, while on cART, serum ROL
correlated with triglycerides and cholesterol levels. No
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Table 2 Baseline descriptors for the 2 groups of HIV-infected participants

Descriptor Group 1 (N = 10) Group 2 (N =12) P value*
HIV duration (years) P=0.2
Median (range) 10.7 (15-13.0) 120 (20 - 18.0)

Mean (SEM) 99 (12) 123 (14)

95% ClI 70,127 92,154

cART duration (years) P =0.1
Median (range) 46 (14-11.0) 10.5 (5.0 - 15.0)

Mean (SEM) 56 (1.2) 84 (1.4)

95% Cl 28,83 52,115

CD4* count (cells/pL) P = 0.003
Median (range) 375 (220-1050) 55.0 (10.0-520)

Mean (SEM) 492 (95.0) 135 (54.0)

95% ClI 277,707 16.0, 254

CD4* % P = 0.002
Median (range) 220 (150 - 43.0 40 (1.0 - 26.0)

Mean (SEM) 264 (3.3) 8.1 (2.6)

95% ClI 189, 339 23,138

CD8*38" index P = 0.001
Median (range) 14 (09 - 25) 44 (15-126)

Mean (SEM) 15(0.2) 49 (09

95% Cl 11,19 29,69

HIV viral load P < 0.001
(log1p RNA copies/mL)

Median (range) 1.707-17) 46 (17 -62)

Mean (SEM) 1.7 (0) 4.1 (04)

95% ClI 17,17 3.2 (5.0)

Body mass index (kg/m?) P=07
Median (range) 214 (19.1-30.1) 23.0 (166 - 29.8)

Mean (SEM) 230 (1.2) 230 (1.0

95% Cl 20.0, 25.8 20.7, 25.2

*By using Mann -Whitney test

correlation was apparent between ROL and VL, CD4" T-
cell count or CD8"38" fluorescence index in HIV-infected
patients.

No correlation was found between serum ROL and
concomitant RAs concentrations in the whole study
population.

ROL/RAs ratio

We assessed also this ratio since both parameters could
be affected: ROL, mainly by HIV infection and RAs
mainly by cART.

ROL/RAs ratios (Figure 3) were significantly higher in
G1 than in the other 2 groups but decreased signifi-
cantly during the second cART interruption (P < 0.01).
No correlation was found between the ROL/RAs ratio
and VL, CD4" T-cell count, or the CD8%38" fluores-
cence index while on or off cART.

ROL/RA ratio correlated significantly (ry = 0.76, P =
0.01) with fasting serum cholesterol in G1 during ON2
(short term optimal cART).

Gender differences in RAs and ROL levels

Since our study participants were not matched by gender
we analysed also data from adult males only:10 in each
group. We found the same statistically significant differ-
ences, as we have seen with the entire study population.
Serum ROL levels in G1 were the highest and statistically
significantly greater than in G2 males (P < 0.001). Healthy
males from G3 had statistically significantly elevated ROL
levels than male patients from G2 (P < 0.01). We also
noted the same statistically significant difference (P < 0.01)
in RAs concentrations between G1 and the 10 men from
G3. Moreover, there were no significant differences
between serum RAs (P = 0.6) or ROL levels in males only
versus the entire group of participants. No significant dif-
ference was found between healthy males and females for
RAs (P = 0.5) or ROL (P = 0.2).

Discussion
This work provides evidence that serum retinoid con-
centrations are affected in HIV-infected adults and that
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Cross-sectional Longitudinal assessments
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Figure 1 Serum retinoic acid: cross-sectional and longitudinal assessments. Bars represent means and SEM. G1 = patients enrolled in the
CTN-140 Trial: ON 1 = during cART intensification (long-term effect); OFF 1 = during first cART interruption; ON 2 = after first CART resumption
when viral load was again below the detection limit (short-term effect); OFF 2 = during second cART interruption. G2 = HIV-infected persons
with suboptimal virologic control (repeated detectable VL); G3 = healthy volunteers. P values for cross-sectional assessments are from the
Kruskal-Wallis test, followed by Dunnett's post hoc test for multiple comparisons. P values for longitudinal assessments in G1 are from
Friedman's test, followed by Dunnett's post hoc test for multiple comparisons.
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Figure 2 Serum retinol: cross-sectional and longitudinal assessments. Bars represent means and SEM. G1 = patients enrolled in the CTN-
140 Trial: ON 1 = during cART intensification (long-term effect); OFF 1 = during first cART interruption; ON 2 = after first CART resumption when
viral load was again below the detection limit (short-term effect); OFF 2 = during second cART interruption. G2 = HIV-infected persons with
suboptimal virologic control (repeated detectable VL); G3 = healthy volunteers. P values for cross-sectional assessments are from the Kruskal-
Wallis test, followed by Dunnett's post hoc test for multiple comparisons. P values for longitudinal assessments in G1 are from Friedman’s test,
followed by Dunnett’s post hoc test for multiple comparisons.
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Cross-sectional Longitudinal assessments
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Figure 3 Serum retinol: retinoic acid ratio: cross-sectional and longitudinal assessments. Bars represent means and SEM. G1 = patients
enrolled in the CTN-140 Trial: ON 1 = during cART intensification (long-term effect); OFF 1 = during first cART interruption; ON 2 = after first
CART resumption when viral load was again below the detection limit (short-term effect); OFF 2 = during second cART interruption. G2 = HIV-
infected persons with suboptimal virologic control (repeated detectable VL); G3 = healthy volunteers. P values for cross-sectional assessments
are from the Kruskal-Wallis test, followed by Dunnett's post hoc test for multiple comparisons. P values for longitudinal assessments in G1 are

from Friedman’s test, followed by Dunnett's post hoc test for multiple comparisons.

both cART and HIV infection are contributing factors.
An optimal cART and, to a lesser degree, a suboptimal
cART, drastically diminished serum RAs concentrations
in HIV-infected adults in comparison to healthy volun-
teers. This effect was more pronounced and statistically
significant in patients with intensified and prolonged
optimal cART. Longitudinal assessments in these
patients while on or off cART did not show significant
changes. This could be due to the low number of partici-
pants, great interindividual variability and mostly to the
different duration of ON1 versus ON2 and OFF1 versus
OFF2. However, if we look at the 75% percentile we see
the same “pattern”: RA levels increase during cART inter-
ruptions and diminish when cART is re-initiated.
Decreased serum RA concentrations during cART is
probably the result of altered intracellular retinoid meta-
bolism by cART. We previously demonstrated that some
antiretrovirals increase in vitro activity of RALDHI and,
consequently, RAs synthesis [17]. Moreover, one protease
inhibitor, indinavir, also augmented RALDH1 mRNA
expression [17]. In vivo, such antiretrovirals might also
affect intracellular RALDH1, and increase intracellular
RAs concentrations especially in those tissues actively
involved in retinoid metabolism, like adipose tissue, in
which they penetrate, and accumulate [24,25]. However,
not all PIs have the same effect since they enter and
accumulate differently in different tissues and have differ-
ent intracellular localizations [21,25,26]. Moreover, as it

was recently reported, adipose tissue influences tissue
distribution of carotenoids [26] and certainly of RAs [24].
Heightened RAs concentrations in different tissues [21]
enhance the expression of various P450 CYP enzymes
such as CYP 26A1, CYP 26B1 and CYP 26Cl1, resulting
in increased RAs catabolism [10,27]. Of note, these CYP
enzymes are different than those affected by PIs. Further-
more, elevated intracellular RAs concentrations have a
negative feedback action and reduce their own synthesis
by lowering RALDH1 expression [28]. Therefore, it is
likely that the low serum RAs concentrations in patients
with optimal cART could be due to increased RAs cata-
bolism and feedback inhibition of their synthesis that fol-
lowed increases in their intracellular concentration when
cART was initiated. In order to document this assump-
tion, concomitant measurements of serum and tissue
RAs concentrations are necessary. This was not possible
when this study was undertaken because our technique
was not suited, at that time, for tissue samples proces-
sing. Altered retinoid metabolism could have multiple
consequences by affecting RAs-dependent genes involved
in metabolic, hormonal and immune processes [4,6,1,23]
and may explain some reported HIV- and cART-related
metabolic and hormonal abnormalities [23].

It was shown previously that retinoids can modulate
HIV-1 long terminal repeat-directed expression and
either augment or reduce HIV replication according to
cell line and culture conditions [29,30]. It was also
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reported that all-frans RA may act as a reverse transcrip-
tase inhibitor reducing the HIV-1 proviral DNA load
[31]. In both our groups of HIV-infected persons, serum
RAs concentrations were not correlated with viral load,
or CD4" T-cell count or CD8" 38" fluorescence index.
However, such correlations might exist between intracel-
lular RAs concentrations and viro- immunological
results. It is noteworthy that in G1 patients, RAs were
significantly correlated with fasting serum C-peptide
when their cART was reinitiated after the first cART
interruption. This is consistent with the reported correla-
tion between RAs and hemoglobin Alc in diabetes melli-
tus patients [32].

We also showed that ROL concentrations were highest
during intensified, optimal cART, and they decreased
during cART interruptions when HIV load rebounded,
and then increased slightly when cART was resumed and
VL was again undetectable. We observed also that HIV-
infected adults with suboptimal cART have significantly
lower ROL concentrations than patients with optimal
cART and healthy adults. These data confirm our pre-
vious results [17] and are in keeping with other reports
[17-19]. These observations clearly underline the negative
effect of HIV infection on serum ROL and the beneficial
effects of optimal cART.

Decreased serum ROL concentrations have been noted
in HIV-infected individuals since the beginning of the
AIDS epidemic, and they have been correlated with HIV-
related morbidity and mortality as well as mother-to-
child HIV transmission [19,33,34]. In fact, it is well
known that plasma ROL decreases during inflammation
and infection, including HIV [35]. In one study, patients
with raised C-reactive protein levels had ROL concentra-
tions lower by 25% [35]. It is suggested, therefore, to
adjust serum ROL measurements with the concomitant
values of inflammatory markers, such as C-reactive pro-
tein, in order not to overestimate vitamin A deficiency
[35]. Although we routinely measure C-reactive protein
levels in our HIV-infected patients, this was not included
in the initial protocol. If we retrospectively adjust serum
ROL levels during uncontrolled HIV infection by increas-
ing the measured values by 25% for C-reactive protein
elevation as suggested [35] we still have significant differ-
ences between G1 and G2.

Vitamin A supplementation has been shown, in some
reports, to be beneficial in children, women and HIV-
infected people in developing countries [29,33,34]. How-
ever, other reports showed that vitamin A and B-carotene
supplementation in lactating women increases HIV load
in breast milk [36]. Furthermore, vitamin supplementa-
tion, including vitamin A and -carotene, increases the
risk of subclinical mastitis in HIV-infected women [37].
A systematic review of randomized trials did not support
vitamin A supplementation of HIV-infected pregnant
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and lactating women, despite improvement in birth
weight [38]. A Cochrane review also found that currently
available evidence does not support the use of Vitamin A
supplementation of HIV-infected pregnant women to
reduce mother-to-child transmission of HIV [39]. The
best way to normalize or increase ROL levels is to opti-
mally treat HIV infection as our data clearly showed.

The elevated ROL concentrations detected during opti-
mal cART are certainly the result of appropriate control
of HIV infection, and, probably, of improved epithelial
integrity and increased intestinal absorption [10,40,41].
Decreased ROL utilization is also possible, due to
decreased RAs synthesis. The ROL concentrations corre-
lated with serum triglycerides and cholesterol in G1
while on cART, suggesting that both ROL elevation and
these metabolic abnormalities are, partly, related to
cART. Moreover, HIV-infected patients had significantly
higher baseline triglycerides levels in comparison with
healthy volunteers. Elevation of serum triglyceride con-
centrations is a known adverse effect of some antiretro-
virals [15] and is also reported in patients treated with
RA [12]. This finding indirectly suggest that cART-
related hypertriglyceridemia might be secondary to
increased intracellular RA levels.

Finally, we observed that ROL/RAs ratios are signifi-
cantly elevated during cART, especially during its intensi-
fication, as compared with healthy controls and people
with suboptimally-controlled HIV infection. Both
increased ROL and diminished RAs levels were responsi-
ble for such high ratios.

The limitations of this study should be also considered,
mainly the reduced sample size and uneven gender distri-
bution. We had only 10 participants in CTN 140 trial due
to ethical requirements in 1999 when this clinical trial
was designed, and only 12 consecutive patients with sub-
optimal cART when the cross-sectional assessments were
performed. However, in spite of this small sample size,
we demonstrated statistically significant differences
between groups and intra subjects followed longitudin-
ally. As to the gender, there are no clear data showing
gender differences in retinoid metabolism [35]. We did
not find significant differences between healthy males
and health females. When we analysed separately the
male persons only, in spite of the reduced sample size of
10 patients in each group, we obtained similar results as
for the whole group of participants.

HIV-infected persons were receiving different cART
regimens when the tests were performed and this might
be another limitation. However, the study was not
designed to assess the effects of different cCART on serum
retinoids but rather the effects of optimal versus subopti-
mal cART and of HIV alone during cART interruptions.
Another limitation is the lack of a control group of
naive-to-treatment HIV-infected persons. This was not
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possible when this exploratory study was initiated
because very few naive patients were seen at our center
and most of them were hospitalised for AIDS-related ill-
nesses. Furthermore, the effects, if any, of therapeutic
vaccination and hydroxyurea (used to diminish the lym-
phocyte activation) could not be totally excluded. How-
ever, the intra-subject approach with longitudinal
assessments diminished this theoretical bias. Moreover,
hydroxyurea has a short half-life and is was given as a
single dose in the evening and the blood specimens for
retinoid assessments were drawn more than12 hours
after the dose. Finally, being an exploratory work we did
not assessed concomitant intracellular retinoid levels.

Nevertheless, we demonstrate that serum retinoids are
significantly altered in adults with chronic HIV infection
and that the contributing factors could be both HIV
infection and its treatment. Based on these data and
previous in vitro work we may assume that some of the
retinoid-like side-effects, including metabolic abnormal-
ities or clinical events, seen in HIV-infected persons on
cART are due, at least in part, to altered intracellular
retinoid metabolism [23]. Moreover, other beneficial
non-virologic effects of antiretrovirals might be related
to the effects of cART on retinoid metabolism [23].
However, further studies assessing concomitant serum
and intracellular retinoid levels during different cART
regimens in larger, homogenous groups of HIV-infected
persons are warranted.
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