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Abstract

Background: Genotype-derived drug resistance profiles are a valuable asset in HIV-1 therapy decisions. Therapy
decisions could be further improved, both in terms of predicting length of current therapy success and in
preserving followup therapy options, through better knowledge of mutational pathways- here defined as specific
locations on the viral genome which, when mutant, alter the risk that additional specific mutations arise. We limit
the search to locations in the reverse transcriptase region of the HIV-1 genome which host resistance mutations to
nucleoside (NRTI) and non-nucleoside (NNRTI) reverse transcriptase inhibitors (as listed in the 2008 International
AIDS Society report), or which were mutant at therapy start in 5% or more of the therapies studied.

Methods: A Cox proportional hazards model was fit to each location with the hazard of a mutation at that
location during therapy proportional to the presence/absence of mutations at the remaining locations at therapy
start. A pathway from preexisting to occurring mutation was indicated if the covariate was both selected as
important via smoothly clipped absolute deviation (a form of regularized regression) and had a small p-value. The
Cox model also allowed controlling for non-genetic parameters and potential nuisance factors such as viral
resistance and number of previous therapies. Results were based on 1981 therapies given to 1495 distinct patients
drawn from the EuResist database.

Results: The strongest influence on the hazard of developing NRTI resistance was having more than four previous
therapies, not any one existing resistance mutation. Known NRTI resistance pathways were shown, and previously
speculated inhibition between the thymidine analog pathways was evidenced. Evidence was found for a number
of specific pathways between NRTI and NNRTI resistance sites. A number of common mutations were shown to
increase the hazard of developing both NRTI and NNRTI resistance. Viral resistance to the therapy compounds did
not materially effect the hazard of mutation in our model.

resistance mutations.

Conclusions: The accuracy of therapy outcome prediction tools may be increased by including the number of
previous treatments, and by considering locations in the HIV genome which increase the hazard of developing

Background

Antiretroviral treatment has turned infection with the
Human Immunodeficiency Virus (HIV-1) into a man-
ageable disease. Yet eventually the HIV variants circulat-
ing in the patient develop resistance to the applied
drugs. In many cases, it is known which mutations give
resistance to which drugs, allowing accurate prediction
of therapy efficacy based on HIV genotyping [1], with
generally good results [2,3]. Better understanding of
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which pre-existing mutations effect the development of
resistance would further improve treatment, informing
both choice of compounds for the current therapy and
long-term strategies to maintain treatment options
when the current therapy fails.

Reverse transcriptase inhibitors (RTIs) are the longest
used and arguably the most important class of antiretro-
virals. These compounds inhibit the reverse transcrip-
tion of single-stranded viral RNA into double-stranded
viral DNA suitable for incorporation into the host DNA.
They are classified as either nucleoside (NRTIs), which
incorporate into and terminate transcription of the viral
DNA, or non-nucleoside (NNRTIs), which change the
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conformation of the RT polymerase into a non-func-
tional state. RTIs are expected to remain a critical ther-
apy component even as new classes of drugs, such as
entry and integrase inhibitors, are added to the anti-HIV
arsenal [4].

Accordingly, a great deal of work has investigated
development of RTI resistance. Many RTI resistance
mutations are known to occur in clusters [5]. Two of
the most studied NRTI clusters are the thymidine ana-
log resistance mutations, TAM-1 (41L, 210W, 215Y)
and TAM-2 (67N, 70R, 215F, 219E/Q), [6]. which show
evidence of appearing in ordered sequence [6,7]. Less
evidence supports pathways to NNRTT resistance, which
can arise from a single mutation [8] with little impact
on viral fitness [9-11]. Data from clinical trials of efavir-
enz (an NNRTI), however, suggested that mutation at
location 103 preceded mutation at locations 100, 101,
108, and 225 [12,13].

Standard of care generally dictates two NRTIs supple-
mented with additional compounds which may include
an NNRTI. Understanding of the development of resis-
tance under such multidrug regimes is far from com-
plete [14,15]. It has been shown that subjects with
NNRTI resistance were at greater hazard of developing
NRTI resistance, and vice versa [16], but not which spe-
cific factors explained this. Several sources have indi-
cated interactions and other forms of crossplay between
NRTI and NNRTI resistance mutations, but have not
demonstrated clear pathways [4,17].

Many of the mutations which commonly occur during
therapy do not have a known, direct connection with
drug resistance. In the data studied here, 45 different
locations frequently harbored mutations at therapy start;
32 of these are not on the International AIDS Society
list of RTI resistance mutations [18]. Patterns within
these other mutations may underly the just commented
on interplay, lending high interest to pathways leading
from commonly mutant locations to known resistance
sites.

We place the question of identifying mutational path-
ways in a survival analysis framework. A mutational
pathway from (genetic) location a to b is signalled if
mutation at location a alters the hazard of mutation at
location b. Survival analysis extends the specificity of
investigations based on co-occurrence of mutations (i.e.
[4,7,17]) by indicating both excitatory and inhibitory
influences, incorporating temporal dynamics, and mak-
ing full use of the data despite the abundant censoring.
The framework further allows for control of nuisance
parameters which are inherent in clinical data. In the
current case, the most important of these is having a
high number of previous therapies. While other techni-
ques from survival analysis have been previously applied
to RTI resistance [11,13,16], and protease inhibitor
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resistance [19], this is, to our knowledge, the first use of
such methods to directly addresses the question of spe-
cific mutational pathways.

We tested for pathways between known resistance
sites, and also for pathways between commonly mutant
locations. Pathways were signalled by a two stage filter-
ing process. For a given mutational site, we first applied
smoothly clipped absolute deviation (SCAD) [20], a
form of regularized regression, to identify a subset of
pre-existing mutations which showed evidence of influ-
encing the hazard of mutation at that site. These were
further screened via standard significance testing to
identify those with strong evidence for effect. The
model also tested for effects associated with the clinical
variables. Longitudinal data were available from the
EuResist database [21]. EuResist maintains, to our
knowledge, the largest HIV resistance database available
for public research.

Methods

Subject material

Subject material for this study was drawn from the
EuResist database [21]. The EuResist project integrates
viral genotypes, therapy, and patient data collected by
hospitals throughout Europe, notably from Italy, Ger-
many, Sweden, Belgium, Spain, Portugal, and Luxem-
bourg. Our study was based on therapy records which
contain genotypes recorded both at therapy start and
before therapy end, and which included an RTI. While
the EuResist database was not designed with this desi-
derata, the 2010-01-26 release contains 1981 RTI-
based therapies for which HIV genotype was recorded
up to three months prior to therapy start, and a sec-
ond genotype recorded before the end of said therapy.
These therapies represent 1495 unique subjects. Two
hundred and seven subjects appear twice, and 102 sub-
jects appear multiple times. Table 1 lists the ten most
frequently prescribed combinations of RTIs; the full
list is given in the supplement [see Additional file 1,
Table S1].

The outcome measure of the current study was the
presence of mutation at a second genotype taken before
therapy end. The distribution of the time delay between
the first and second genotyping was approximately
equally across the different risk groups [see Additional
File 1, Figure S1]. The use of a second genotyping is
subtly, but crucially, distinct from using time of therapy
failure as an outcome measure. Twenty percent of the
therapies were ongoing at the time the second genotype
was recorded. Further, the EuResist database defines a
therapy based on the compounds given. Therapies are
considered to end when any compound in the therapy is
added or removed, regardless of virological suppression.
Often the cause is therapy change is not recorded. Table
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Table 1 Therapy profiles Table 3 Patient profile
Therapy profiles Patient demographics
Compounds N Duration # Previous Age 1st genotyping 39.7 years +93
3TC AZT 259 549 (21,3515) 3(0,28) Gender (M/F) 1054 M 433 F
d4T DDI 149 553 (40,3291) 2 (0,19) Num prev therps 4 (median) 0-32 (range)
TDF FTC 123 284 (28,1122) 9 (0,25) Days between genotypings 485 (mean) 639 (variance)
3TC d4T 115 646 (19,3508) 5(0,18) Risk group:
3TC TDF 96 1 (27,1360) 4 (0,20) Heterosexual 450 30%
3TC DDI 61 590 (43,2268) 6 (1,37) Homo/bisexual 367 25%
3TC ABC 52 397 (40,1140) 5(0,18) VDA 372 25%
AZT 50 379 (1,1939) 2 (0,12 Vertical transmission 33 2%
3TC ABC AZT 50 437 (28,1423) 46 (0,19) Blood products 25 2%
AZT DDI 49 3 (57,1408) 510,17) Other/unknown 245 16%

The data in the current study contains 119 unique combinations of reverse
transcriptease inhibitors. The 10 most common combinations are listed here,
along with the number of subjects receiving them, mean (range) duration in
days, and mean (range) number of previous therapies when administered.
Note that these therapies may also have included protease inhibitors. The full
table is given in the supplement.

2, therapy stop causes, indicates that 51% of the current
therapies do not have a recorded stop cause. Only 19%
of the second genotypings are unequivocally associated
with therapy failure.

All genotypes are population sequences reflecting the
consensus HIV-1 genotype at the time of measurement.
Subject demographics (shown in Table 3) are heteroge-
neous, and all major risk groups are well represented.
The median number of previous therapies is 4, and
ranges from no previous treatments (249 subjects) to 37
previous treatments (1 subject). The reason for includ-
ing therapy naive subjects is that a pathway is defined
by an increase in risk of developing a resistance muta-
tion based on pre-existing mutations. Including therapy
naive subjects in the model gives a better estimate of
the baseline hazard estimate.

Table 2 Therapy stop causes

Therapy stop causes

Cause count percent
Unknown 1026 0.52
Ongoing 398 0.20
Failure 372 0.19
Side effects 67 0.03
Change of therapy 57 0.03
Adherence 38 0.02
Supervised Interruption 23 0.01
TOTAL 1981

EuResist defines a therapy based strictly on the compounds included. Any
change in compounds is recored as a therapy change. The reason for therapy
change was recorded for 75% of the records included here, and are listed in
the database under the following categories.

Background data on the subjects included in the study. When a subject has
contributed multiple therapy records to the study, the demographic
information is taken from the first therapy included.

Binarization and locations (codons) considered

This study investigated locations (or codons) known to
harbor RTI resistance mutations and locations which
were commonly mutant in the EuResist data. Known
resistance sites were drawn from 2008 International
AIDS Society list of mutations associated with antiretro-
viral drug resistance [18]. This included the following
locations: NRTI: 41, 62, 65, 67, 69, 70, 74, 75, 77, 115,
116, 151, 184, 210, 215, 219 and NNRTI: 100, 101, 103,
106, 108, 181, 188, 190, 225. Commonly mutant loca-
tions were defined as those which were mutant at the
start of 5% or more of the therapies studied here,
namely: 20, 35, 39, 41, 43, 44, 49, 60, 67, 68, 69, 70, 74,
83, 98, 101, 103, 118, 122, 123, 135, 142, 162, 166, 169,
173, 174, 177, 178, 179, 181, 184, 190, 196, 200, 202,
203, 207, 208, 210, 211, 214, 215, 219, and 228. Figure 1
(known resistance) and Figure 2 (commonly mutant)
show the frequency of mutation at these locations, both
at therapy start and at the second genotyping, for each
of the major patient risk groups.

During this investigation only the location was speci-
fied and not the amino acid substitution. The assump-
tion is that mutations detectable by population
sequencing would be heavily influenced by treatment
history. Binarization offered several additional advan-
tages. It simplifies ambiguities arising from the genotyp-
ing method. Further, the study included commonly
mutant locations not necessarily listed as important to
resistance and thus with little literature support to
decide which substitutions were relevant. Binarization
allowed these locations to be treated identically to the
known resistance mutations.

A location was considered to have a preexisting muta-
tion if its genotype at therapy start did not completely
agree with the wild type. For example, a location with
wild-type “M” which showed the mixture “MV” at
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Figure 1 Frequency of resistance mutations. The percentage of therapies which developed mutation during therapy at the indicated location
(top), and which had a preexisting mutation at the indicated location (bottom), by risk group. The patterns are consistent across the different risk
groups. Locations are codons associated with significant resistance to one or more RTI compounds, as reported in the 2008 International AIDS
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Figure 2 Frequency of common mutations. The percentage of therapies which developed mutation during therapy at the indicated location
(top), and which had a preexisting mutation at the indicated location (bottom), by risk group. The patterns are consistent across the different
risk groups. Locations are codons which were mutant at the start of 5% or more of the therapies, but which are not included on the
International AIDS Society list of resistance mutations [18].
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therapy start would be coded as a mutation. A mutation
was considered to have occurred during therapy if the
observed sequence did not contain an amino acid
observed in the preexisting sequence and was not wild
type. A preexisting “ML” which changed to “L” during
the course of therapy would not be considered a muta-
tion, while a change to “R” would be.

Identifying mutational pathways-basic framework

Given a location of interest ¢, the goal was to identify
other locations where preexisting mutations significantly
altered the hazard of developing a mutation at c. The
influence could be either inhibitory or excitatory. The
question was formulated in terms of the Cox propor-
tional hazards model using regressors to signal the pre-
sence/absence of preexisting mutations and to control
for nuisance parameters. Formally,

hei(t) = heo(t) exp(pr,i + . .. + pji + NUisa,i), (1)

where /c,(t) is the hazard that location ¢ becomes
mutant in subject i during therapy and /hco(t) is the
baseline hazard of mutation at ¢. The Cox model does
not require specification of /cy(t), which is integrated
out during the model fitting. A preexisting mutation at
location j™ in subject i is coded by py,; ... pj» Having the
median or fewer previous therapies was coded by nuis, ;.
Other potential nuisance factors, such as the total num-
ber of mutations, viral resistance to the therapy com-
pounds, and treatment start year were deemed non-
informative in preliminary investigations. An event was
signalled when location ¢ was mutant in subject i at the
second genotype but not the first. The time to event
was the number of days between the two genotypes.
While the direction of effect is likely to be correct, this
simplifying assumption regarding time to event implies
that estimates of magnitude should be regarded with
caution.

Within this framework, identification of pathways
reduces to a variable selection problem; selecting those
regressors with strong evidence of effect on the hazard
of developing the target mutation. We first filtered the
list of potential regressors using smoothly clipped abso-
lute deviation (SCAD) [20]. SCAD is a form of regular-
ized regression, similar to the LASSO, but with the
added benefit that the regularization parameter scales
with the magnitude of the regression coefficient. The
regressors included in the best SCAD model were then
tested for significance using the Wald estimate, and
those with p <0.01 were deemed to have sufficient evi-
dence to suggest a pathway.

While each individual model could only detect one-
step pathways (i.e. pre-existing mutation at locations p3
and p, increased the hazard of mutation at ¢), fitting the
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model to each of the candidate regressors in turn pro-
duces an adjacency matrix which can be viewed as a
directed graph allowing multi-step pathways. We first
searched for pathways among known resistance sites by
considering the combined list of NRTI and NNRTI
resistance locations. We then searched for pathways in
our list of commonly mutant locations.

Statistics and figures were created in the R software
environment, version 2.7.1 [22]. SCAD was implemented
using the R package SIS [23]. Cox model fitting and the
Wald estimate were performed using the R package sur-
vival [24]. Visualization was aided by the packages
ggplot2 [25] and igraph [26].

Identifying mutational pathways - specific models

The basic model identifies pre-existing mutation with
strong evidence for effect on the hazard of developing
mutation at one specific target location c. Given this
location, therapy data is restricted to those at risk of
developing mutation at ¢, that is, those whose HIV gen-
otype did not exhibit mutation at ¢ at the start of treat-
ment. When ¢ was an NNRTI resistance location,
therapies were further restricted to those receiving an
NNRTI. Note that all of the therapies under considera-
tion included NRTIs. Candidate regressors were also
dependent on ¢. Obviously c itself could not be a candi-
date. Further, some locations never exhibited a preexist-
ing mutation in at-risk therapies, and were dropped to
prevent convergence issues. Finally, if data is not avail-
able on a specific pre-existing mutation for more than
10 of the at-risk therapies, it was dropped from the
model.

Results and Discussion

The single factor which most consistently influences the
hazard of mutation at locations with known involvement
in NRTT resistance is the number of previous therapies.
The median number of previous therapies in the data
studied here is 4. Therapies for patients with 4 or less
previous therapies are associated with less than half the
risk of developing RT resistance. The effect is observed
at 9 out of 16 locations associated with NRTT resistance:
codons 65, 67, 69, 70, 74, 115, 210, 215, and 219. The
median hazard ratio is 0.37 (ranging from 0.15 to 0.52),
with the lowest 95% confidence bound at 0.06 and the
highest at 0.81. This effect is not due to the presence of
more known resistance mutations in patients with a
large number of previous therapies, as known resistance
mutations were regressed out by the model. In addition,
further testing indicated that genotypically estimated
viral resistance has negligible effect in our models. The
finding could, however, represent the accumulation of
mutations in regions about which little is known
because they are rarely sequenced. For example, the first
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investigation of mutations in the connection and ribonu-
clease H domains of RT has shown that such mutations
strongly influence AZT resistance in combination with
the TAM pathways [27].

The study clearly substantiates the well established
TAM pathways. The TAM-1 pathway is demonstrated
by the observation that mutation at location 215
increases the hazard of mutation at location 41. The
TAM-2 pathway is supported by finding that mutation
at location 67 increases the hazard of mutation at loca-
tions 70 and 219, and that mutation at 70 increases the
hazard at 219. All of these pathways involve an esti-
mated three-fold increase in hazard. (Estimated hazard
ratios for all indicated mutational pathways which end
at known resistance sites are given in Tables 4 and 5.
Hazard ratios for pathways which end at commonly
mutant locations are listed in the supplement [see Addi-
tional file 1, Table S2]. Our results concur with biologi-
cal assays suggesting that 215 precedes 41 in
development of the TAM-1 pathway, [6], and that 67N
and 70R are the first mutations to appear in the TAM-2
pathway [27]. The pathway order as determined by the
current model largely agrees with that determined by

Table 4 Hazard Ratios for pathways between known
resistance locations

Hazard ratios between known resistance locations

Pathway Hazard Confidence Bounds
41 — 108 7.54 (22, 25.8)

67 — 70 352 (2.08, 5.98)

67 — 190 3.19 (141, 7.21)

67 = 219 297 (1.72,5.14)

70 = 210* 033 (0.15, 0.75)

70 = 219 2.68 (1.6, 447)

74 — 100 1292 (348, 47.95)

77 — 103 7.76 (2.6, 23.16)

115 — 106 17.51 (1.26, 243.88)
116 —» 62 27.81 (873, 88.58)
151 > 116 23767 (3471, 1627.63)
181 —» 65 3.28 (122, 881)

184 — 181" 1.77 (1.07, 292)

184 — 210 027 (0.17,042)

190 — 184 1.84 (1.15, 2.95)
210 > 70 0.09 (0.03, 0.23)

215 > 41 323 (215, 4.85)

215 — 65 0.06 (0.01, 0.28)

Estimated hazard ratios and 95% confidence bounds for all pathways between
known resistance locations with p < 0.01. Two additional pathways, which
were remarked on in the text, are also included. Estimation was done using
the survival [24] package of the R software environment [22].

*p =0.011 Tp= 0019
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Table 5 Hazard Ratios for pathways from commonly
mutant locations to known resistance locations

Hazard ratios; common to resistance locations

Pathway Hazard Confidence Bounds
43 — 103 1.92 (0.85, 4.35)
49 — 103 046 (0.20, 1.07)
67 — 70 4.66 (2.17,9.99)
67 — 190 331 (1.70, 6.42)
68 — 184 1.93 (1.21,3.08)
70 —> 103 1.01 (049, 2.08)
70 — 181 037 (0.15, 0.92)
70 —> 219 276 (1.61, 4.74)
74 —> 184 1.84 (1.07, 3.17)
118 = 219 1.62 (0.83, 3.14)
135 > 210 038 (0.25, 0.59)
142 — 67 1.89 (113, 3.16)
162 — 70 1.89 (1.08,3.31)
179 —> 103 1.98 (0.97, 4.02)
184 — 181 192 (1.13,3.27)
184 — 190 0.73 (0.39, 1.39)
196 — 103 1.87 (1.14, 3.05)
196 — 190 1.90 (092, 3.92)
196 — 210 047 (0.24, 0.93)
200 - 190 1.76 (0.92, 3.35)
210 » 70 0.12 (0.04, 0.34)
211 = 210 046 (0.31, 0.68)
214 — 69 269 (1.44, 5.03)
215 - 41 3.12 (2.05, 4.75)

Estimated hazard ratios and 95% confidence bounds for pathways leading
from commonly mutant locations to locations with known association to RTI
resistance. Slight discrepancies in estimated hazard ratios between this table
and Table 4 are due to a different choice of regressors used to fit the model.
Estimation was done using the survival [24] package of the R software
environment [22].

the mutagenetic tree model both as applied to the cur-
rent data and as in the original publication [7].

Inhibition of TAM-2 by TAM-1 is also observed.
Mutation at location 210 is associated with a tenfold
reduction in the risk of mutation at 70. A similar effect
is witnessed in the reverse direction, though the reduc-
tion is only threefold, and the significance level is just
above threshold (p = 0.011). The to date most thorough
report on the TAM pathways [6] presented speculative
evidence that TAM-1 inhibits TAM-2. Independent sup-
port for this inhibition was presented by Sing et. al [28].
Other studies, however, have reported that some
patients develop mutations in both TAM clusters, or
switching from TAM-1 to TAM-2 [29].

No pathways are seen between NNRTI resistance
locations. This was not unexpected, as in vitro investiga-
tions suggest that resistance to most NNRTIs can result
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from a single mutation [8]. This evidence is corrobo-
rated by a Bayesian analysis of combinatorial mutation
patterns which indicates that interactions among muta-
tions granting nevirapine (an NNRTI) resistance were
very weak [30]. Pathways have been suggested, however,
in data from a clinical trial of efavirenz [12,13].

The method also indicated several cross-class resis-
tance pathways. Specific pathways from NRTI to
NNRTTI resistance included the following, all of which
showed multi-fold increase in hazard: 41 — 108, 67 —
190, 74 — 100, and 77 — 103. Previous work has
observed that mutation at 74 is associated with
increased frequency of NNRTI failure [4]; mutation at
location 100 grants resistance to most NNRTIs [18].
Some evidence also suggests that the L74V mutation
compensates loss of viral fitness incurred by the double
NNRTTI resistance mutations L100I + K103N [31].

A pathway was suggested from 184 to 181, though the
associated p-value (0.019) is above our threshold. This
finding is disconcerting, as mutation at 184 is one of the
most common routes to NRTI resistance, and mutation
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at 181 grants resistance to all NNRTIs [18]. Specific
NNRTI to NRTI resistance pathways are 181 — 65 and
190 — 184. Bayesian networks have suggested robust
dependencies between NRTI mutations at 65, 74, 75,
and 184 and NNRTI mutations at 100, 181, 190, and
230 [17], though the pathways suggested by the current
work are not explicitly implicated in [17]. The adjacency
matrix describing the pathways indicated in the current
study is given in Figure 3, a network representation is
given in Figure 4.

Survival analysis has shown that having any (N)NRTI
resistance mutation increases the hazard of developing a
mutation in the other class, [16]. We note that Healy et
al.’s findings of general dependence showed stronger
effect sizes than ours. This slight divergence could be
dependent on the selection of subjects. Most of Healy et
al.’s subjects had few previous treatments, while the
EuResist subjects had failed a median of four previous
therapies. As the EuResist subjects had a number of
accumulated mutations, the risk profile of mutations
which could arise in these subjects is likely to differ

41
62
67
69
70
74
75
77

RT 41
RT 62
RT 65
RT 67
RT 69
RT 70
RT 74
RT 75
RT 115
RT 116
RT 151
RT 184
RT 210
RT 215
RT 219
RT 100
RT 101
RT 103
RT 106
RT 108
RT 181
RT 190

with p < 001.

Figure 3 Adjacency matrix of pathways within RTI resistance locations. Columns are pre-existing mutations, rows are the outcome
mutation. The matrix has been reduced to only include rows or columns with at least one detected effect. Colored cells are those which were

suggested by SCAD. Grey cells had p > 0.05; the remaining cells are colored based on p-value, with darker colors indicating lower p-values. Red
colors indicate a pre-existing mutation was associated with an increase in hazard, blue indicates a reduction. A box has been drawn around cells

151
184
210
215
219
103
108
181
190
t.hist

5]
2 .--i
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Figure 4 RTI resistance pathways. The adjacency matrix from Figure 1 (thresholded at p < 0.01) rendered as a graph. Red pathways indicate
an increase in hazard, blue a reduction. Orange nodes are locations hosting NRTI resistance mutations, blue nodes are NNRTI locations.

substantially from Healy et al.’s subjects. The evolution-
ary dynamics might also differ between the two groups.
The accumulated mutations in the HIV variants circu-
lating in patients with a long treatment history are likely
to have reduced the virus’s replicative capacity [32]. Dif-
ferences could also be specific to viral subtype. We note
that neither Healy et. al. nor the report of the clinical
trial which supplied their data provide subtype informa-
tion. Finally, Healy et al.’s data came from a prospective
study, whereas the EuResist data is retrospective.

Commonly mutant locations were defined as those loca-
tions which hosted a mutation at the start of at least 5% of
the therapies analyzed in this study. Of the 45 locations
which met this criteria, 13 are known to harbor resistance
mutations. Fifteen edges lead out from known resistance
sites. Five of these connect to locations not associated with
resistance. The patterns observed above in the known
resistance mutations are mostly preserved in this list. This
should not be regarded as an independent observation.
Though the candidate regressors are different, the data is
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the same. The adjacency matrix describing pathways in
commonly mutant locations is given in Figure 5, a net-
work representation is given in Figure 6.

Pathways which lead to known resistance sites could
prove informative in predicting the development of
(further) resistance. A number of pathways to NRTI
resistance sites begin from locations not listed as provid-
ing RTI resistance, though the estimated increase in
hazard is in general lower than that observed between
known resistance mutations (see Table 5). Their influ-
ence suggests that therapy outcome prediction engines
could be improved by incorporation of the following
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pathways: 142 — 67, 214 — 69, and 162 — 70. It was
also observed that 68 — 184, and that mutation at
either 177 or 181 increases the hazard of 68. This final
observation suggests an indirect 181 — 68 — 184 path-
way from NNRTI to NRTI resistance. An inhibitory
pathway was also identified, with mutation at 135 redu-
cing the hazard of mutation at 210 by a factor of 0.38
(95% confidence bounds of 0.25, 0.59).

Several pre-existing mutations are associated with
increased hazard for mutation granting NNRTT resis-
tance, concurring with previous research suggesting that
pathways to NNRTI resistance may start from
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society list.

.

Figure 6 Pathways in commonly mutation locations. The adjacency matrix from Figure 3 (thresholded at p < 0.01) rendered as a graph. Red
pathways indicate an increase in hazard, blue a reduction. Edges leading into or out from known resistance sites have been made thicker.
Orange nodes are locations hosting NRTI resistance mutations, blue nodes are NNRTI locations, green nodes are not on the International AIDS

previously unsuspected mutations [4]. Notably, mutation
at any of 43, 179,0r 196 increases the hazard of muta-
tion at 103.

196 or 200 increase the hazard at 190. Mutation at
location 103 or 190 grants strong resistance to both
EFV and NVP. This again suggests that consideration
might be given to mutations at locations 43, 179, 196,
or 200 before prescribing these NNRTIs. Location 43

could play a part in NRTI to NNRTI resistance, since
210 — 43 — 103. The 184 — 181 pathway suggested in
the known resistance sites was again observed, and now
with sufficient evidence to pass our threshold.

Several mutations seemed to decrease the hazard of
NNRTI resistance. Notably, mutation at location 70
(part of the TAM-1 complex granting NRTI resistance)
strongly inhibits mutation at location 181. Location
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184 was observed to slightly inhibit mutation at loca-
tion 190.

This work is, as far as we know, the first to fully employ
the Cox model to identify specific mutational pathways.
The proportional hazards approach is more sophisticated
than methods which do not include time to event or cen-
sored events and which cannot control for nuisance para-
meters. Modeling was simplified, however, by assuming
right censored data whereas interval censoring better
describes the process generating the data. This simplifying
assumption was required as we had no good indication of
what an appropriate interval would be. It was justified in
that the principle benefit of interval censoring is a more
accurate estimate of effect size, not effect significance. Effect
size did not play a role in our estimation of pathways.

Some evidence suggests that viral subtype also effects
hazard of mutation. Several studies have observed a rela-
tionship between resistance mutations and viral subtype,
as reviewed in [33] and [34]. A difficulty with such studies,
however, is that the data on non-B subtypes tends to
come from resource-limited regions where treatment
regimes do not always meet European standards of best
clinical care. This situation is likely to change as the demo-
graphics of the disease change; the UK Health Protection
Agency now reports that the majority of UK infections are
non-B [35]. Also, molecular dynamics suggest that differ-
ent patterns of DNA synthesis in subtype C variants com-
pared to subtype B increase the hazard of developing the
K65R mutation [36]. Since subtype prevalence varies
greatly by patient risk category, it is possible that analysis
of subjects in the heterosexual risk group might demon-
strate different pathways, or the same pathways with dif-
ferent hazard ratios, than observed in the full data. On the
other hand, binarization of the data may have reduced this
effect. The V106M resistance mutation may be preferred
over V106A in subtype C [37]; the current study gives
both of these events the same encoding. Preliminary analy-
sis found subtype to be non-informative to the current
model as applied to the EuResist data.

Data for the study came from a large observational
database. This can lead to several forms of bias in the
data. While we believe these effects to be small, they
should be noted. The first bias deals with model
assumptions. Our data was censored at the time of the
second genotyping. This event is not necessarily inde-
pendent from our outcome measure, the hazard of
mutation. Dependence between the two, however, is dif-
ficult to ascertain. The bias would be strongest when
the genotyping was conducted due to virological failure
of the therapy, a factor which would increase the hazard
of additional mutation. On the other hand, virological
failure could be caused by the development of resistance
mutations, which are present in the model and whose
effect is therefore already included in the calculations.
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The remaining biases are due to the clinical practices
which underly the data gathering. For some, and per-
haps most, of the therapies, genotyping was used to
select treatment. Neither drug choices nor drug combi-
nations were random, nor were the associations between
drugs and resistance mutations. The EuResist database
does not record which, if any, patients were left on fail-
ing regimens. Continuing a therapy in the presence of
detectable viral loads is linked to increased hazard of
mutation [38]. Finally, it should always be remembered
that correlation does not imply causality. The underlying
reason for an observed dependency could be influenced
by shared inheritance from a founder virus or shared
evolutionary pressures.

The current work did not investigate pathways to pro-
tease inhibitor (PI) pathways resistance as our primary
interest was on cross-class RT mutational pathways.
Nonetheless, some key work on pathways to protease inhi-
bitor (PI) resistance should be noted. Many of the groups
researching RTI resistance have also worked on PI resis-
tance, and the development of statistical approaches has
come from both endeavors. PI resistance mutations form
clusters [19]. Temporal dependencies in HIV genetic
changes in response to PIs have been indicated via Baye-
sian model selection [39]. Bayesian networks have been
used to uncover direct influences between protein residues
and treatment in clinical settings, and were able to deter-
mine the specific role of many resistance mutations
against nelfinavir [40]. Phylogenetic approaches are also
informative in determining pathways [13]. A cross-class
pathway with promising clinical implications is a finding
that patients with PI resistance are less likely to develop
resistance to Bevirimat (a maturation inhibitor) than those
who are Pl-naive [41].

Conclusions

This investigation found specific pathways both within
and across drug classes. It was further found that the
most consistent factor speeding the development of
NRTI resistance was not any known mutation, but
rather having failed more than four previous therapies.

Additional material

Additional file 1: Supplementary materials. This file contains Figure
S1, showing the relationship between event times and risk group, Table
S1, showing all therapy profiles in the current data, and Table S2, the
estimated hazard ratios for all identified pathways between commonly
mutant locations.
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