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Minocycline fails to modulate cerebrospinal fluid
HIV infection or immune activation in chronic
untreated HIV-1 infection: results of a pilot study
Emily L Ho1,4, Serena S Spudich1,5, Evelyn Lee1, Dietmar Fuchs2, Elizabeth Sinclair3 and Richard W Price1*

Abstract

Background: Minocycline is a tetracycline antibiotic that has been shown to attenuate central nervous system
(CNS) lentivirus infection, immune activation, and brain injury in model systems. To initiate assessment of
minocycline as an adjuvant therapy in human CNS HIV infection, we conducted an open-labelled pilot study of its
effects on cerebrospinal fluid (CSF) and blood biomarkers of infection and immune responses in 7 viremic subjects
not taking antiretroviral therapy.

Results: There were no discernable effects of minocycline on CSF or blood HIV-1 RNA, or biomarkers of immune
activation and inflammation including: CSF and blood neopterin, CSF CCL2, CSF white blood cell count, and
expression of cell-surface activation markers on CSF and blood T lymphocytes and monocytes.

Conclusions: This pilot study of biological responses to minocycline suggests little potential for its use as
adjunctive antiviral or immunomodulating therapy in chronic untreated HIV infection.

Background
Human immunodeficiency virus type one (HIV) infec-
tion of the central nervous system (CNS) is a nearly ubi-
quitous facet of systemic infection that begins early after
exposure [1-6]. This CNS infection is accompanied by
local immune responses that are reflected in elevations
of CSF biomarkers of immune activation and inflamma-
tion [7-11]. Though clinically inapparent in most
patients, CNS HIV infection evolves in some to a more
‘invasive’ HIV encephalitis (HIVE) that manifests with
the cognitive and motor dysfunction characteristic of
the AIDS dementia complex (ADC) [12], now com-
monly referred to as HIV-associated dementia (HAD)
[13]. While the pathogenesis of brain injury related to
HIVE is not precisely understood, it likely involves
‘indirect’ pathways of injury in which host inflammatory
mediators serve as important neuropathogenic signals
and toxins and, hence, in a broad sense can be consid-
ered immunopathological [14,15]. Chronic subclinical
CNS infection may also be accompanied by more

indolent brain injury that manifests later as cognitive
impairment [13,16,17] and possibly continues despite
antiretroviral treatment [18]. Although the pathogenesis
of this type of chronic injury is less well understood
than that of HIVE, continued immune activation may be
an important factor [8,19,20].
These indirect mechanisms of injury have led to a

search for adjuvant modes of treatment to mitigate
brain injury by attenuating immunopathology or inter-
fering with downstream neurotoxic pathways. While a
number of adjunctive therapies have been advocated or
tested [21], none of these has yet proved effective or
entered clinical practice. Recently, the antibiotic, mino-
cycline, has been proposed as a candidate therapy in
this broad class. Minocycline has been shown to reduce
lentivirus infection and immune responses in model sys-
tems [22-27] and also to exert neuroprotective effects in
diverse models of neurodegeneration [28-35]. This has
led to the suggestion that it might be useful in human
HIV infection, either as an adjunct to [25] or low-cost
replacement for antiretroviral treatment, with particular
relevance to attenuation of CNS infection and disease.
To begin to test this in the human disease setting, we
initiated a pilot study to evaluate minocycline in chronic
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human HIV infection in the absence of antiretroviral
therapy, using CSF and blood biomarkers as principal
indices of drug effects, with CSF infection thus serving
as a ‘model’ of and window into CNS infection and
immunoactivation [36,37]. For this open-labelled pilot
study we hypothesized that minocycline would reduce
CSF HIV-1 RNA concentrations, both absolutely and in
relation to blood HIV-1 RNA, and diminish evidence of
CSF and blood immune activation, including CSF and
blood concentrations of neopterin [11,38], CSF concen-
trations of CCL2 (monocyte chemotactic protein-1,
MCP-1) [39,40] and T cell and monocyte expression of
cell-surface activation markers [10].

Results
Of 17 subjects screened over a period of 3 years (2006-
2009), 6 were excluded because of low CSF HIV-1 RNA
(N = 3) or unsuccessful lumbar punctures (N = 3). Three
other subjects withdrew from the study without starting
minocycline treatment. One subject enrolled in the study
but stopped after 4 days due to a reaction to minocycline
(nausea and vomiting) that resolved after stopping the
drug. The remaining 7 subjects entered the study and
were prescribed minocycline. Their baseline characteristics
are shown in Table 1. Six of these completed the study
without adverse events. One subject discontinued minocy-
cline after week 4 of the study due to elevations in serum
transaminases, but continued study participation through
the washout period and the last visit at week 14; the trans-
aminases subsequently returned to normal. For repeated
measures ANOVA analysis, this subject’s 4-week results
were carried forward and included in the 8-week data.
The six remaining subjects tolerated the treatment without
clinical or laboratory evidence of toxicity.
Figure 1 shows the changes from baseline in the pri-

mary and secondary outcome measures. There were no
significant changes in the virological measures. Both the
CSF (A) and plasma (B) HIV-1 RNA remained stable, as
did the CSF:plasma HIV-1 RNA ratio (not shown). Like-
wise, neither the CSF (C) nor plasma (D) neopterin chan-
ged. Similarly, none of the CSF or blood T cell (E - H) or
monocyte (I and J) activation levels changed. There was
no reduction in the CSF WBC count (K), which is com-
posed principally of blood-derived T cells [10,41,42]. CSF
CCL2 (L), CSF:blood albumin ratio (M), and the brief
measure of neurological performance, the QNPZ-4 score
(N), also did not change significantly. Curiously, there
was a reduction of absolute CD8+ (O) and CD4+ (P)
T cell numbers in the blood, although only the latter was
statistically significant by repeated measures analysis.

Discussion
This pilot study was undertaken to explore the use of
minocycline as an adjuvant treatment for chronic HIV

infection, particularly for attenuating the CNS compo-
nents of immunoactivation and infection. It aimed to
provide a preliminary view of the biological effects of
minocycline on CNS HIV immune reactions and infec-
tion, and to obtain effect-size estimates for power calcula-
tions prior to planning a larger controlled trial. Our
underlying mechanistic hypotheses centered on the pro-
posed capacity of minocycline to attenuate CNS immune
and systemic perturbations and their effects on CNS
infection as revealed by changes in CSF and blood bio-
markers. We hypothesized that attenuating these immu-
nological effects would be reflected in reductions in CSF
(and perhaps plasma) neopterin and CSF CCL2 concen-
trations, and in the expression of surface activation

Table 1 Baseline subject characteristics

Median Range

Age (years) 49.9 32.0 - 55.2

Gender (M:F) 6:1

Time since HIV diagnosis (years) 17.0 1.7 - 20.3

HIV-1 RNA (log10 copies/mL)

Plasma 4.49 4.26 - 5.56

CSF 3.87 3.11 - 4.47

Plasma:CSF difference 1.06 0.12 - 1.58

Blood T cells (cells/μL)

CD4+ 453 267 - 806

CD8+ 1,009 575 - 2185

CSF WBCs (cells/μL) 9 2 - 18

Neopterin (nmol/L)

CSF 13.1 5.9 - 41.2

Plasma 13.4 9.2 - 53.5

CSF CCL2 (pg/mL) 479.2 397.9 - 1322.2

T Cell Activation (percent CD38+/HLA-DR+)

CSF CD4+ 14.7 3.4 - 60.2

Blood CD4+ 13.3 7.6 - 24.7

CSF CD8+ 83.4 41.8 - 97.6

Blood CD8+ 58.5 34.5 - 78.0

Monocyte Activation (percent CD16+)

CSF monocytes 93.6 80.1 - 100

Blood monocytes 10.8 4.7 - 17.0

CSF:blood albumin ratio 5.05 3.91 - 12.26

QNPZ-4 -0.32 -3.44 - 0.54
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markers on T cells and monocytes. Additionally, we
hypothesized that minocycline might also indirectly
reduce CNS infection through its effects on various
immune system-related mechanisms that contribute to
the magnitude of CNS (and CSF) infection, including:
CD4+ T cell traffic that brings both infected cells and
uninfected targets into the CNS, and CD4+ T cell and
macrophage activation that enhance viral replication in
these cell types. Unfortunately, in this study, none of
these effects were seen. Similarly, there were no changes
in the other secondary endpoints, including CSF WBC
counts, CSF:blood albumin ratios or the brief neurologi-
cal performance battery, the QNPZ-4.

Minocycline, a licensed tetracycline antibiotic, has
been reported to have a number of properties that make
it an attractive adjuvant therapy candidate. In various
model systems, it has been shown to have anti-inflam-
matory effects [43,44], including modulation of T cell
activation and attenuation of macrophage and microglial
activation [27,34,45,46]. It also has neuroprotective
properties in vitro and in in vivo animal models [47-52].
These and other properties have led to trials of minocy-
cline in several conditions, including rheumatoid arthri-
tis [53], and neurodegenerative and neuroinflammatory
diseases [33,52,54,55]. Minocycline also has been shown
to inhibit HIV replication in microglia in vitro [22].

Figure 1 Changes in outcome variables in the CSF and blood with minocycline treatment. The horizontal bar in panel A indicates the
period of minocycline treatment. Panels show the mean changes from baseline and 95% confidence intervals for CSF (A) and plasma (B) HIV-1
RNA concentrations; CSF (C) and plasma (D) neopterin concentrations; percent of CSF (E) and blood (F) CD8+ T cell activation, as assessed by co-
expression of CD38 and HLA-DR on CD3+CD8+ lymphocytes; percent of CSF (G) and blood (H) CD4+ T cell activation, as assessed by co-
expression of CD38 and HLA-DR on CD3+CD4+ lymphocytes; percent of CSF monocyte activation (I) as assessed by CD16 expression on CD14
+CD4loCD3lo cells; percent of blood monocyte activation (J) as assessed by CD16 expression on CD14+CD4loCD3- cells; CSF WBC counts (K);
CSF CCL2 concentration (L); QNPZ-4 performance score (N); and blood CD8+ (O) and CD4+ (P) T cell counts. Analysis of individual changes from
baseline by Kruskal-Wallis and Dunn’s post hoc testing from baseline to 8 weeks or 14 weeks and by repeated measures from baseline to 8 or
14 weeks with Dunnet’s post hoc testing of each interval found no significant changes for any of the 12 variables shown except for changes in
the blood CD4+ T cell counts (P), which was statistically significant for weeks 0 - 8 (P = 0.035) and weeks 0 - 14 (P = 0.013). Abbreviation: Act =
activation.
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Importantly, in an SIV model of accelerated CNS infec-
tion, minocycline-treated SIV-infected macaques were
noted to have less severe encephalitis, reduced expres-
sion of CNS inflammatory markers, reduced axonal
degeneration and lower levels of CNS virus replication
[23]. Recent in vitro studies on human peripheral blood
CD4+ T cells demonstrate that minocycline has anti-
viral effects in CD4+ T cells and reduces cellular CD4+
T cell activation [27]. Since all of these properties made
it an intriguing candidate for adjuvant use in CNS HIV
infection, our study results thus beg the issue of why we
did not see similar effects in the studied patients.
While it is possible that the CSF measurements were

insensitive to salutary effects on the brain parenchyma,
including the important perivascular environment, this
does not seem likely. CSF neopterin is a marker of CNS
macrophage activation (presumably including both brain
and meningeal populations) that increases with disease
severity and is especially elevated in HIVE/HAD [11,38].
This pteridine biomarker responds well to antiretroviral
therapy [11], although it does not always return to nor-
mal levels [8,19,56]. Its blood concentration is also a
prognostic marker of disease progression [57]. Both CSF
and blood levels were unaffected by minocycline in our
study, suggesting that there was little effect on CNS or
systemic macrophage activation. Similarly, CSF CCL2, a
biomarker of macrophage chemotaxis that is also char-
acteristically elevated in HAD/HIVE [58], showed no
changes. This is especially disappointing since CSF
CCL2 has been used as a biomarker in SIV encephalitis,
and was shown to be reduced by minocycline treatment
in the SIV model [23,40]. Increased levels of CD4+ T
cell, CD8+ T cell and monocyte activation observed
in the CSF compared to the blood is characteristic of
HIV infection [10,42,59] and is likely an important com-
ponent of both systemic [60-62] and CNS disease patho-
genesis [10,20]. These measures also were stable through
the course of minocyline treatment.
CSF HIV-1 RNA levels reflect more than one cellular

source, with the relative contributions differing depending
on the stage of systemic and CNS infection and disease
evolution [63-66]. Short-lived cells, presumably CD4+ T
cells, contribute a CSF viral population that is genetically
similar to the blood population [63]. This component has
been termed transitory infection [5,37] and is presumably
sustained by infected and susceptible CD4+ T cells traf-
ficking into the meninges and brain. In early HIV infec-
tion, this type of infection predominates and may even be
the only type detected [67]. A second viral population
turns over more slowly [66]. This population is likely
derived from macrophages, and is genetically distinct
from the blood population. This component, termed
autonomous or compartmentalized infection, is character-
istically detected as a minor contributor to CSF HIV

levels in neuroasymptomatic chronic infection, but predo-
minates in more advanced infection, particularly HIV
encephalitis (HIVE) [64].
Minocycline might attenuate both types of infection

by its effects on T cell and monocyte-macrophage acti-
vation. In the case of transitory infection, T cell activa-
tion is critical to support HIV replication and also
promotes T cell traffic that carries infected and unin-
fected target CD4+ T cells into the meninges and peri-
vascular spaces. Hence, if minocycline alters these T cell
properties it might reduce this type of CSF infection.
Similarly, activation is likely important for macrophages
in sustaining infection and also, perhaps, in their entry
into the CNS, including into the perivascular spaces,
meninges and parenchyma. Minocycline might, there-
fore, reduce this type of autonomous infection. How-
ever, we detected no evidence of reduced CSF infection,
although in the subjects studied with relatively preserved
blood CD4+ T cell counts, the major CSF viral popula-
tion likely originated from transitory type infection,
although this was not directly examined in these
subjects.
Our methods of examining the hypothesized actions

of minocycline should have been adequate to detect a
substantial immunological or virological effect of minocy-
cline. Possible reasons as to why there were no discern-
able effects similar to those in the SIV-infected pigtailed
macaques may have included species differences. Perhaps
more likely were differences in the disease targets. The
SIV model differs from our subjects in the relatively
short disease duration and the presence of frank lenti-
virus encephalitis [23]. Our study patients had a chronic
‘stable’ infection for a number of years and thus, perhaps,
presented a level of immune activation and viral replica-
tion that the drug effect was too weak to modify. In addi-
tion, the absence of encephalitis meant that there might
have been little CNS disease to target. Our study, of
course, did not address these possibilities.
The study also did not assess the more direct neuro-

protective properties of minocycline. With one excep-
tion, our subjects were largely neuroasymptomatic, and
we performed only brief quantitative neurological per-
formance testing (QNPZ-4) on four measures. The
small improvement noted in this measure, which was
not statistically significant, might have related to prac-
tice effect. However, if the observed improvement was
indeed real, then a study with 20-25 subjects in each of
two treatment arms (minocycline and placebo) would be
needed for an 80% power to detect the difference found
here at 8 weeks. An AIDS Clinical Trials Group study is
studying whether minocycline might improve perfor-
mance in cognitively impaired HIV-infected subjects
(http://clinicaltrials.gov/ct2/show/NCT00361257), and
these issues should be addressed by that study.
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The observed decline in blood CD4+ and CD8+ T cell
counts was unexpected and unexplained. Curiously, it
did not impact the CSF WBC count. This mild T-cell
lymphopenia needs to be verified in a larger study, and
if so, subject to further investigation.
Overall, this pilot study was subject to several inher-

ent design limitations, including its small size, relatively
short duration, and absence of an untreated control
group for comparison, raising concern for Type II
error. Thus, we cannot fully dismiss the possibility that
the study was underpowered to detect a mild effect of
the drug or that CSF HIV and CNS immune activation
might decline further with longer exposure. However,
given the minimal changes noted in the major out-
comes, it would take a large study to test the effective-
ness of minocycline on these measures in this type of
patient population. For example, if the small reduction
(-0.070 log10 copies/mL) in CSF HIV-1 RNA at 8
weeks was indeed a ‘real’ finding, then it would require
more than 100 subjects in each of the two arms (mino-
cycline and placebo) to have an 80% power to detect
this difference between the groups, a difference with
likely little clinical meaning. In the case of CSF neop-
terin, there was no statistically significant reduction,
but if the slight increase at 8 weeks (0.033 nmol/L) was
inverted and actually a reduction, it would take 500
subject in each group to detect this difference. Thus,
the effects of minocycline on infection and immune
activation appeared too weak to justify a study of the
requisite size, particularly when viewed in comparison
to the potent effects of combination antiretroviral on
these variables [6].

Conclusions
In conclusion, this small pilot study suggests that any
effects of minocycline on CNS HIV infection and
immune activation were not sufficient to impact chronic
HIV in the absence of antiretroviral treatment. There-
fore, there seems little justification or indeed ethical
basis for treating chronic HIV infection with minocy-
cline instead of combination antiretroviral drugs. How-
ever, given the reported in vitro and SIV effects of this
tetracycline [23], there still may be reason for further
study, for example in well-treated patients in which the
level of immunoactivation is partially attenuated or in
patients with cognitive impairment in which its neuro-
protective properties may yet prove useful in concert
with combination antiretroviral treatment.

Methods
This study was approved by the University of California
San Francisco Committee on Human Research and con-
ducted according to the principles expressed in the
Declaration of Helsinki. Informed written consent was

obtained from all subjects. The study was registered
with ClinicalTrials.gov (number: NCT01064752).

Study design
This was an open-labelled, uncontrolled, pilot study
examining the effects of 100 mg of minocycline taken
orally twice daily for 8 weeks. Subject entry criteria
included: ≥18 years of age; chronic HIV infection with
plasma and CSF HIV-1 RNA concentrations >1,000
copies/mL; not taking antiretroviral therapy (either naïve
to therapy or >6 weeks off treatment with no plans to
start during the period of study); predicted medication
adherence; blood CD4+ T cell counts >100 cells/μl; no
previous adverse reaction to tetracyclines; no tetracycline
treatment for the past 6 months; no contraindications to
lumbar puncture (LP); no active opportunistic infection
or neurological disease confounding evaluations; ADC
stage <1 [68]; no concomitant medications altering the
metabolism or risk of minocycline; hemoglobin >10 g/dL
and liver transaminases <2.5 times upper limit of normal;
and not taking any other immunomodulating drugs.
After consent, subjects underwent a screening evaluation
that included lumbar puncture (LP) and CSF characteri-
zation, concurrent blood sampling, and standardized
neurological assessments as previously described
[6,10,69]. For those meeting entry criteria, this also
served as the baseline visit, and they starting minocycline
100 mg twice daily orally for the next 8 weeks. At four
and eight weeks, and after a 6-week washout period off
minocycline, subjects underwent repeated evaluation
similar to the baseline, including LP and CSF analysis
[6,10,69]. Treatment adherence was assessed at each on-
study visit by direct questioning and pill count.
The primary outcome measures were the change from

baseline during treatment in CSF HIV-1 RNA and CSF
neopterin concentrations as indices of CNS infection
and immunoactivation [38]. Change from baseline was
calculated at weeks four and eight after initiation of
minocycline treatment and after a 6-week wash-out per-
iod. Additional secondary measured outcomes included
changes in: CSF white blood cell (WBC) count; blood
CD4+ and CD8+ counts; ratio of CSF to blood albumin
as a measure of blood-brain barrier permeability [70,71];
CSF CCL2 as a measure of monocyte-macrophage che-
motaxis [58]; CSF and blood CD4+ and CD8+ T cell
and monocyte activation as measured by multiparameter
flow cytometry [10]. Four quantitative tests (timed gait,
grooved pegboard, finger tapping and digit symbol) were
used to obtain a simple quantitative neurological perfor-
mance aggregate score (QNPZ-4) [72].

CSF and blood assays
HIV-1 RNA was measured in cell-free CSF and plasma
by the Roche Amplicor HIV-1 Monitor assay (versions
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1.0 and 1.5, Roche Diagnostic Systems, Inc., Branchburg,
N.J). Neopterin concentrations in cell-free CSF and
plasma were measured in batch by ELISA according to
the manufacturer’s instructions (BRAHMS Aktienge-
sellschaft, Hennigsdorf, Germany). Blood CD4+ and
CD8+ T cell counts were performed in the San Fran-
cisco General Hospital (SFGH) Clinical Laboratories
using standard flow cytometric methods. CCL2 was
measured in cell-free CSF by ELISA (R&D Systems,
Minneapolis, MN). Other measurements performed in
the SFGH Clinical Laboratories using routine clinical
methods included CSF and blood albumin (used to
compute the CSF:blood albumin ratio [70,71]), CSF
WBC counts and differential, CSF total protein and
blood metabolic profile.
CSF and blood CD4+ and CD8+ T cell activation were

assessed by the percent of these cells in fresh specimens
co-expressing surface CD38 and HLA-DR by multipara-
meter flow cytometry as previously described [10].
Blood monocytes were defined as CD14+CD4loCD3-
cells from the mononuclear gate. CSF monocytes had
low level staining for CD3 and were defined as CD14
+CD4loCD3lo cells. Monocyte activation was defined by
the percent of these cells expressing CD16 [10]. Flow
cytometry data was compensated and analysed with
FlowJo (Tree Star, Ashland, OR).

Statistics
Changes from baseline to follow-up test intervals were
analysed by Kruskal-Wallis test with Dunn’s post hoc
comparison of individual intervals and additionally from
baseline through week 8 using repeated measures
ANOVA with Dunnet’s post hoc comparison. All P
values were two-sided with values <0.05 considered sig-
nificant. Statistical analyses used Prism 5 (GraphPad
Software Inc, San Diego, CA) while power calculations
used StatMate 2.00 (GraphPad Software Inc).
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