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Abstract

Background: HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein
(gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and
serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported
that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability
affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact
of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal
antibodies of individuals infected with other HIV-1 subtypes is unknown.

Methods: Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell,
rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing
monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual
gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot
assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2
Env-pseudotyped R5 viruses.

Results: We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately
contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and
447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope
(268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for
other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included
CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9,
PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121).
Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells.

Conclusion: Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120
glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1
gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated
HIV-1 envelope as a vaccine antigen.

Keywords: gp120 glycosylation, Glycan-specific antibody, Deglycosylation resistance, Neutralization inhibition
* Correspondence: raskamil@uab.edu; jannovak@uab.edu
1Department of Immunology, Palacky University in Olomouc, 77100
Olomouc, Czech Republic
2Department of Microbiology, University of Alabama at Birmingham,
Birmingham, AL 35294, USA
Full list of author information is available at the end of the article

© 2014 Raska et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:raskamil@uab.edu
mailto:jannovak@uab.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Raska et al. AIDS Research and Therapy 2014, 11:23 Page 2 of 16
http://www.aidsrestherapy.com/content/11/1/23
Background
The HIV-1 envelope glycoprotein (Env), a trimer of
gp120/gp41, is the relevant target for neutralizing anti-
bodies [1-9]. Such antibodies may limit disease progres-
sion, as shown for elite neutralizers whose antibodies
exhibit strong and broadly neutralizing activity in vitro
[9-12]. However, efforts to generate Env-based vaccines
have had limited success [13-16] due to the high variability
of the env gene. For the gp120 subunit, N-glycans contri-
bute approximately 50% of the total molecular mass [17].
The viral genome determines the potential attachment sites
of the N-glycans (specific amino-acid motifs N-X-S/T),
whereas the biosynthetic machinery of the host cells produ-
cing the virus profoundly determines the composition of
the Env glycans [18-20].
We previously reported that glycosylation of gp120 was

affected by the cell type and metabolic activity of the pro-
ducer cells, resulting in distinct gp120 N-glycan content
and heterogeneity [21]. Notably, gp120 produced in T cells
contains mostly high-mannose and hybrid N-glycans with
fewer complex N-glycans compared with gp120 produced
in other cell types, such as hepatocytes, which contains a
higher proportion of complex N-glycans in addition to
high-mannose N-glycans. The recombinant gp120 pro-
duced in T cells, B cells, and HEK 293T cells has extensive
heterogeneity of complex N-glycans [21]. Moreover, cell-
type specific N-glycosylation of gp120 affects the binding
by antibodies from sera of subjects infected with subtype
B HIV-1 [21], results that extend previous work on cell-
specific HIV-1 Env glycosylation [17,18,22-28].
HIV-1 attachment to and entry into a host cell requires

interaction between viral Env and the host cell CD4 recep-
tor and CCR5 or CXCR4 co-receptor [20,29,30]. Env gly-
cans influence these interactions [31-35] and, thus, impact
HIV-1 infectivity [36,37]. In this regard, the vaccine trial
RV144 identified a potentially protective epitope of HIV-1
Env in the gp120 V1/2 loop [38,39] and V1/2 loop glycan
(N160) that contributes to formation of a quarternary-
structure epitope recognized by new class of broadly neu-
tralizing monoclonal antibodies of PG family [10,40].
Although glycans influence protein folding, potentially af-
fecting the conformation of surface-exposed epitopes in-
volved in antibody binding, N-glycans also serve as
epitopes or part of epitopes for some broadly neutralizing
antibodies [40-54]. Conversely, gp120 glycans may serve
as a “shield” against neutralizing antibodies [44,55-57]. For
example, in late-stage HIV-1 infection, escape variants
with env gene sequences that encode additional or deleted
potential N-glycosylation sites (PNGS) promote resistance
to neutralizing antibodies [4,31,32,58-69].
In this manuscript, we show that the binding of broadly

neutralizing monoclonal antibodies to native, recombinant
oligomeric gp120 was determined by the producing cell-
specific differential glycosylation. A partial removal of
N-glycans from gp120 increased the binding of some
gp120-specific monoclonal antibodies, as well as poly-
clonal serum antibodies from persons infected with HIV-1
subtype A/C. Conversely, the binding of several other
gp120-specific monoclonal antibodies was reduced. More-
over, the different gp120 glycoforms variably inhibited
HIV-1 infection of reporter cells, depending on cell-specific
glycosylation. Thus, our data support the hypothesis that
the glycosylation machinery of cells that produce HIV-1
Env shapes gp120 glycans and, consequently, impacts anti-
body reactivity as well as virus infectivity. Therefore, it is
important in the design of HIV-1 vaccines to take into ac-
count the differential glycosylation of gp120.

Results
Glycosylation of gp120 affects recognition by
gp120-specific neutralizing and non-neutralizing
monoclonal antibodies
To elucidate the role of Env glycans in binding of gp120
by HIV-1-specific antibodies, we evaluated the binding
of recombinant gp120 produced in four cell lines (HEK
293T, Jurkat, HepG2, and CHO) representing four dif-
ferentially glycosylated gp120 variants [21].
Western blot detection after SDS-PAGE separation of

denatured and reduced gp120 preparations was per-
formed using two broadly neutralizing (2G12 and b12)
and five variably neutralizing (268 D4, F425 B4e8, 257
D4, 447-52D, 19b) HIV-1-specific monoclonal antibodies
(Table 1). As shown in Figure 1A, four of the six anti-
bodies (257 D4, 447-52D, and 19b specific to V3 loop, and
2G12 is specific to Manα1,2Man) exhibited clearly visible
differences in binding to four gp120 glycoproteins. These
data suggested that differential N-glycosylation impacted
antibody access to the neighboring peptide-based Env epi-
topes even in denatured and reduced gp120 glycoproteins.
The relative differences in antibody binding to the glyco-
proteins evaluated by densitometric analysis of two inde-
pendent Western blots are shown in Figure 1B. Notably,
gp120 from CHO cells was only marginally recognized by
the four antibodies (257 D4, 447-52D, 19b, 2G12), whereas
gp120 from HepG2 was preferentially recognized by all
tested monoclonal antibodies. Monoclonal antibody b12,
which detects a conformational peptide epitope, does not
react with gp120 in SDS-PAGE Western blot, and thus
served as a negative control.
Furthermore, we evaluated the binding of HIV-1-

specific monoclonal antibodies to native recombinant
gp120 produced in HEK 293T, Jurkat, RD, HepG2, and
CHO cells using ELISA. Ten of the twelve antibodies (268
D4, 257 D4, 19b, 2G12, b12, PGT121, PG16, PG9, VRC03
and VRC01) demonstrated significant differences in bin-
ding to individual gp120 glycoforms (ANOVA, P < 0.02)
(Figure 2), confirming the effect of N-glycans on the pre-
sentation and/or accessibility of the Env epitopes. No



Table 1 Epitope specification of tested monoclonal antibodies

Monoclonal antibody Epitope structure Epitope Direct involvement
of glycans in epitope

formation

Different reactivity
with individual

gp120 glycoforms*

Glycan-shielding
effect**

Dilution corresponding
to linear range in
ELISA (μg per ml)*

References

268 D4 V3 loop tip HIGPGR linear - + + 0.03 [51,70]

257 D4 V3 loop stem KRIHI linear - + + 0.01 [51,70]

F425 B4e8 V3 loop tip involving GPGRA, Ile309, and Phe317 linear - - + 0.04 [52,71]

447-52D V3 loop tip GPGR plus amino acids at
N-terminal segment of the V3

conformational - - + 0.07 [72,73]

19b V3-loop tip -I——G–FY-T linear - + + 0.01 [74]

2G12 Man α1,2 Man-containing oligo-mannose
N-glycans on C2, C3, V4, and C4

conformational + + + 0.04 [75,76]

PGT 121 V3 base together with multiple surrounding
glycans

conformational + + - 0.15 [77]

PG16 Epitope dependent on several glycosylation
sites in the V1, V2, V3 loop mostly high-mannose

conformational + + - 7 [45,78]

PG9 Epitope dependent on several glycosylation sites
in the V1, V2, V3 loop mostly high-mannose

conformational + + - 6 [45,78]

b12 CD4 binding site conformational - + - 0.01 [79,80]

VRC03 CD4 binding site conformational - + - 7 [81,82]

VRC01 CD4 binding site conformational - + + 0.15 [81,82]

*This study, conclusions based on the differences in mAb binding to individual gp120 glycoforms; ** this study, conclusion based on the partial N-glycan removal effect on mAb binding.
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Figure 1 Reactivities of Env-specific monoclonal antibodies
with gp120 produced in different cell lines determined by
Western blot. (A) Antibody binding to gp120 glycoforms produced
in HEK 293T, Jurkat, HepG2, and CHO cell lines was analyzed by
Western blot after SDS-PAGE separation under reducing conditions.
Western blots were developed with monoclonal antibodies 268 D4,
F425 B4e8, 257 D4, 447-52D, 19b, 2G12, and b12. Anti-V5-tag antibody
was used to assess the amount of loaded gp120. (B) Densities of
individual gp120 glycoform bands obtained from two Western blots
after developing with individual monoclonal antibodies were analyzed
by ImageJ 1.41a software. Densitometric values were normalized to
loaded amount of individual gp120 glycoforms (V5-tag-positive bands).
Mean values from two Western blots were calculated and expressed as
relative reactivity of individual monoclonal antibodies with each
gp120 glycoform.
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significant differences in the binding of the remaining
two antibodies (F425 B4e8 and 447-52D; ANOVA, P >
0.17) to the tested gp120 preparations were observed.
As the antibodies F425 B4e8 and 447-52D recognize
short linear epitope GPGRA and GPGR, respectively,
on the apex of gp120 V3 loop [53], the data suggest that
those epitopes are not significantly affected by hetero-
geneity of sterically adjacent glycans. GPGR-containing
epitope is recognized also by 268 D4 antibody, but this
antibody exhibited significant differences in binding to
different gp120 glycoforms. Unlike the F425 B4e8 and
447-52D antibodies, 268 D4 antibody recognizes an epi-
tope extended N-terminally and therefore probably
more prone to be influenced by adjacent glycans.
Together, these results suggest that variably glycosyl-

ated glycans sterically adjacent to the V3 loop only
moderately contribute to differential recognition of a
short apex motif of V3 loop (GPGR), but they affect
more significantly the binding of antibodies specific for
a longer peptide motif that overlaps with GPGR epitope.
In contrast to V3 apex-recognizing antibodies, recog-
nition of gp120 glycoforms produced by different cell
lines by all other tested monoclonal antibodies specific
to epitopes, such as CD4-binding site (VRC03, VRC01,
b12), discontinuous epitope involving V1/V2 loop with
the associated glycans (PG9, PG16), and V3-base-,
N332 oligomannose-, and surrounding glycans-con-
taining epitope (PGT121), was significantly affected
(ANOVA, P < 0.01).
The gp120 produced by HepG2 was strongly recog-

nized by five of the twelve monoclonal antibodies
(ANOVA, P < 0.01) of which four antibodies are specific
to epitopes close to the apex of V3 loop. Notably, gp120
produced by HepG2 cells, which contained relatively low
levels of high-mannose N-glycans [21], reacted strongly
with 2G12, indicating that the discontinuous epitope com-
posed of high-mannose N-glycans (Manα1,2Man), as well
as folding of the protein, are maintained even in gp120
glycoforms with a high proportion of complex N-glycans.
The gp120 produced by HEK 293T cells (cells commonly
used for production of recombinant gp120 and viruses for
HIV-1 studies) exhibited the weakest reactivity with most
of the tested monoclonal antibodies, except the CD4-
binding-site-specific antibodies (VRC03 and VRC01) and
the V1/V2- and V3-loops and associated glycans-specific
antibody (PG16) (ANOVA, P < 0.01; Figure 2).
When the binding patterns of the monoclonal antibodies

specific to V3 loop apex-containing epitopes determined by
Western blot (Figure 1) and ELISA (Figure 2) were com-
pared, the results suggested similar overall dominance
in the recognition of gp120 glycoforms from HepG2, al-
though the SDS-denaturation and 2-mercaptoethanol
reduction of gp120 during electrophoresis could affect
presentation of gp120 epitopes. By comparing the pro-
file for each antibody binding to individual gp120 gly-
coforms, we found that only 19b antibody, specific for
the V3 apex, reacted similarly in both Western blot
and ELISA. The gp120 glycoforms from CHO cells
were recognized weakly, whereas gp120 glycoforms
from HEK 293T cells were well recognized in Western
blot although they were among the most weakly recog-
nized gp120 glycoforms in ELISA. Control b12 antibody,
which is specific for a multi-peptide conformational
epitope [79], did not bind any of the gp120 glycopro-
teins in the Western blot, due to antigen denaturation,
but it reacted strongly with each gp120 in the ELISA.
These results suggest that, except of V3 loop apex-
specific monoclonal antibodies, the binding of anti-
bodies recognizing epitopes that include CD4-binding
site, V1/V2 or V3 base, or specific glycans (such as
N160, N332) is dependent on cell-type specific glyco-
sylation of gp120.



Figure 2 Comparison of reactivities of selected HIV-1 gp120-specific monoclonal antibodies with native and deglycosylated recombinant
HIV-1 gp120 analyzed by ELISA. ELISA plates were coated with anti-penta-His antibody followed by capture of equal amounts of gp120 produced in
HEK 293T (abbreviated as 293), Jurkat, RD, HepG2, or CHO cells (0.05 μg gp120 per well). gp120 preparations were in native form (black columns) or
deglycosylated with PNGase F (grey columns). Monoclonal antibodies 268 D4, F425 B4e8, 257 D4, 447-52D, 19b, 2G12, b12, PGT121, PG16, PG9,
VRC03, and VRC01 were added and the bound IgG antibodies were detected with HRP-conjugated goat anti-human IgG. Optimal dilutions for each
antibody were determined in preliminary experiments using gp120 produced in HEK 293T cells and it is specified in the Table 1. Values correspond to
mean absorbance ± SD. Averaged results from three experiments with independently produced recombinant gp120 glycoforms are shown.
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Partial deglycosylation of gp120 affects recognition by
some gp120-specific neutralizing and non-neutralizing
monoclonal antibodies
Furthermore, we investigated the contribution of Env N-
glycans to gp120 recognition by monoclonal antibodies by
comparing the antibody binding to the native vs. deglyco-
sylated gp120 variants. After deglycosylation of individual
gp120 variants using N-glycanase (PNGase F) under native
conditions, the level of deglycosylation of each gp120 pro-
tein was confirmed by mobility-shift assay using SDS-
PAGE Western blot (Figure 3). Deglycosylation under
optimized conditions (7.5 IUB PNGase F per 250 ng of
gp120 protein) substantially reduced the apparent molecu-
lar mass of each glycoprotein from 125–135 kDa to 80–
90 kDa, indicating that the remaining glycans were resistant
to the enzymatic removal under native conditions (Figure 3).
Extending the incubation time or increasing PNGase F
concentration did not lead to further reduction of the ap-
parent molecular mass of gp120 on SDS-PAGE Western
blot (data not shown).
After enzymatic deglycosylation, the binding of all anti-

bodies, except that of b12, changed significantly for a set
of five tested gp120 glycoforms (paired t-test, P < 0.03).
The monoclonal antibody b12 reacted equally well with
native and deglycosylated gp120 glycoforms indicating
that the contribution of glycans removed under native
conditions is negligible for this antibody. Deglycosylation
enhanced significantly (paired t-test, P < 0.002) the binding
reactivity of the V3-loop-specific antibodies (268 D4, F425
B4e8, 257 D4, 447-52D, and 19b) [43,75,83] and CD4-
binding-site-specific VRC01 antibody [81]. These data
suggest that some glycans partially protect gp120 against
antibody binding and that the deglycosylation removes
this “glycan shield” (Figures 2A, B). Furthermore, after



Figure 3 Mobility shift of gp120 after deglycosylation. gp120 glycoproteins produced in HEK 293T, Jurkat, RD, HepG2, and CHO cells were
deglycosylated by PNGase F under native conditions, separated by SDS-PAGE under reducing conditions, and detected with anti-V5-tag
monoclonal antibody. Change in migration of untreated (left panel) vs. PNGase F-treated (right panel) gp120 preparations was approximately from
130 kDa to 85 KDa. Results from one of two experiments are shown.
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deglycosylation, the differences in V3-specific monoclonal
antibodies reactivities with individual gp120 glycoproteins
were not significant. Notably, deglycosylation enhanced
more than two-fold ELISA reactivity for 2G12 (paired t-
test, P < 0.001), a monoclonal antibody specific for clusters
of Manα1,2Man-linked glycans, indicating that, in agree-
ment with previously published data, the high-mannose
glycans involved in the epitope formation are resistant to
PNGase F [84,85]. After deglycosylation, 2G12 recognized
each of the five gp120 preparations at significantly differ-
ent magnitudes (ANOVA, P < 0.007). CHO-produced
gp120 antigen was recognized by 2G12 as the best antigen
whereas gp120 produced by Jurkat cells was weakly recog-
nized (Figure 2). Conversely, deglycosylation of gp120
under denaturing conditions resulted in loss of 2G12 re-
activity as detected by Western blot analysis, as all high-
mannose glycans were removed [21]. Unlike the uniform
increase in the reactivity of V3-loop-specific monoclonal
antibodies after partial deglycosylation of gp120 (increase
ranging from 1.5- to 2.5-fold mean ELISA O.D. values;
Figure 2), the reactivity of PGT121 (recognizing V3 base,
the N332 oligomannose glycan, and surrounding glycans),
decreased after gp120 deglycosylation about 0.5-fold com-
pared to the untreated protein (paired t-test, P < 0.001), in-
dicating glycan contribution to PGT121 epitope formation.
Furthermore, after partial deglycosylation, the variability
in PGT121 recognition of individual gp120 glycoforms
remained significant (ANOVA, P < 0.001), leading to con-
clusion that some surrounding glycans involved in epitope
formation are still present. Notably, VRC03 and VRC01
antibodies (recognizing CD4-binding site) exhibited differ-
ential changes in their reactivities with individual gp120
glycoforms after partial deglycosylation. The reactivity of
VRC03 increased about twice (paired t-test, P < 0.001),
whereas that of VRC01 decreased about 0.5-fold com-
pared to the untreated protein (paired t-test, P < 0.001).
The differences in the recognition of individual partially
deglycosylated gp120 glycoforms remained significant for
VRC03 (ANOVA, P < 0.001) and to a lesser extent also for
VRC01 (ANOVA, P < 0.021). This finding suggests that
the recognition of CD4-binding sites by VRC03 and
VRC01 is differentially affected by adjacent glycans and
that some of them contribute to CD4-binding-site epitope
(VRC03). Moreover, other glycans may mask the access to
CD4-binding site (VRC01). Finally, after partial deglycosyl-
ation of gp120, the reactivities of two other monoclonal
antibodies, PG16 and PG9 (specific for quaternary epitope
composed of the gp120 V1/V2 and V3 loops and associ-
ated glycans), decreased (paired t-test, P < 0.03), although
the change was more pronounced for PG9 (Figure 2). The
differences in reactivities of PG antibodies remained sig-
nificant for both PG16 and PG9 (ANOVA, P < 0.004). The
most pronounced decrease in PG9 reactivity was observed
after deglycosylation of gp120 expressed in T-cell line
Jurkat and rhabdomyosarcoma cell line RD. Both cell
types are known to produce gp120 with high content of
high-mannose glycans [21].

Glycosylation of gp120 affects the binding of HIV-1-
specific serum antibodies to gp120
Having previously shown that binding of polyclonal anti-
bodies from persons infected with HIV-1 subtype B can
differentiate the variably glycosylated gp120 preparations
[21], here we investigated the binding of antibodies from
sera of individuals infected with HIV-1 subtype A/C to
gp120 glycoforms either under denaturing (Western
blot) or non-denaturating (dot blot and ELISA) condi-
tions. Serum antibodies from nine subjects infected with
clade A/C virus displayed variable recognition of gp120
according to their glycosylation (Figures 4 and 5). Sig-
nificant differences were observed between SDS-PAGE
Western blot (Figure 4A) and dot blot (Figure 4B) in the
recognition of specific gp120 glycoforms by antibodies
from individual sera. The relative serum antibody reac-
tivities determined densitometrically are presented in
Figures 4C and D. Overall differences in recognition of



Figure 4 Reactivities of serum IgG from HIV-1-infected subjects with HIV-1 gp120 produced in different cell lines analyzed by Western
blot (A, C) and dot-blot (B, D). HIV-1 Env gp120 glycoforms produced in HEK 293T, Jurkat, RD, HepG2 and CHO cells were (A) separated by
SDS-PAGE under reducing conditions and blotted onto a PVDF membrane or (B) dot blotted onto a PVDF membrane and both were developed
with sera (0.2 μg/ml gp120-specific IgG) from HIV-1-infected subjects (P1-9; HIV-1+ sera) or sera (1:200 dilution) from healthy sero-negative
subjects (C1-3; Control sera). Results from one of two experiments are shown. (C, D) Densitometric analysis performed with the ImageJ program
shows mean reactivity of each serum IgG with individual gp120 variants.

Figure 5 Reactivities of serum IgG from HIV-1-infected subjects
with native and deglycosylated HIV-1 gp120. ELISA plates were
coated with anti-penta-His capture antibody followed by binding of
equal amounts of gp120 produced in HEK 293T, Jurkat, RD, HepG2,
or CHO cells (0.05 μg per well). Captured gp120 proteins were native
(empty boxes) or deglycosylated (gray-filled boxes) using PNGase F
under native conditions. Sera from nine HIV-1-infected subjects were
added to the ELISA plates at predetermined dilutions (see Methods).
Bound IgG antibodies were detected with HRP-conjugated goat
anti-human IgG. Data from three independent experiments are
shown. Thick line represents median values and boxes the values
between 25th and 75th percentiles. The upper and lower whiskers
limit 95% of measured values.
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individual gp120 glycoforms by individual sera were higher
for Western blot analyses than for dot-blot analyses, indi-
cating that denaturation of gp120 protein could artificially
enhance differences in reactivates of serum antibodies,
such as detected for sera P2, P4, P6, and P9, although nei-
ther reached statistical significance. Furthermore, we used
a new ELISA approach that may mimic native conditions,
as gp120 oligomers are captured by anti-penta His anti-
body. The capture antibody serves as a long anchor,
thus reducing gp120 contact with hydrophobic surface
of ELISA plates. When the recognition of gp120 glyco-
forms by the same serum antibodies was analyzed by
ELISA (Figure 5), the relative binding to individual
gp120 differed from the binding detected by Western
and dot blots, likely due to gp120 denaturation in the
immunoblot assays (Figures 4 and 5). In the Western
blot analyses, the best recognized gp120 antigen was
that expressed in Jurkat and CHO cell lines, whereas in
dot blot analyses the best recognized antigen was
expressed in HepG2 cell line. In contrast, ELISA ap-
proach did not detect significant differences among
reactivities of all nine sera with individual gp120 prepa-
rations. These results suggest a strong bias caused by
the choice of the method used to detect the binding of
HIV-1 Env-specific antibodies to gp120.
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Similarly to the increased reactivities observed for surface-
exposed-epitope-specific monoclonal antibodies (V3-loop-
specific antibodies, Figure 2), partial deglycosylation of
gp120 glycoforms significantly enhanced the recognition by
serum antibodies (paired t test, P < 0.001). Furthermore, the
differences in recognition of individual gp120 glycoforms by
HIV-1-specific polyclonal antibodies were more pronounced
after partial deglycosylation (ANOVA, P < 0.001) compared
to untreated gp120 glycoforms (ANOVA, P = 0.154). Not-
ably, gp120 glycoforms generated by Jurkat T cells were rec-
ognized less well (ANOVA, P = 0.004) after deglycosylation
than the other four glycoforms, although in native condi-
tions all five gp120 glycoforms were recognized similarly
(Figure 5). Moreover, antibodies in some of the tested sera
exhibited differential reactivity with the gp120 glycans, con-
firming that gp120 glycoforms produced in specific cell
types formed glycan-dependent epitopes.

Cell-specific glycosylation of gp120 affects HIV-1 infection
of indicator cells
To determine the effect of differential gp120 glycosyla-
tion on HIV-1 infection, we tested the ability of gp120
glycoforms generated in different cell types to block
SF162 or YU.2 Env-pseudotyped R5 virus infection of
TZM-bl reporter cells. As shown in Figure 6, the IC50

for gp120 inhibition of SF162 infection ranged between
0.2 and 0.8 μg/well and for YU.2 infection between 0.1
and 0.5 μg/well. The gp120 produced in Jurkat cells most
effectively blocked SF162 virus infection, and gp120 pro-
duced in CHO cells most effectively blocked YU.2 infec-
tion. In contrast, gp120 produced by HEK 293T and RD
muscle cells were the least effective in blocking infection
by both viruses. We also pre-incubated the indicator cells
with each gp120 preparation followed by addition of either
SF169 or YU.2 virus and obtained the same level of inhib-
ition as without pre-incubation (Figure 7). Thus, cell-
specific glycosylation influenced the ability of recombinant
gp120 to block HIV-1 infection of indicator cells.
Figure 6 Inhibition of SF162 and YU.2 HIV-1 infectivity by differential
(200 TCID50) together with serially diluted gp120 preparations (1 to 0.015 μ
activity was measured in the cell lysates. Results are expressed as % inhibit
considered 100% infection. Data from three independent experiments are
Discussion
In this study, we characterized the cell-specific glycoforms
of recombinant trimeric consensus B gp120 with respect
to their recognition by monoclonal gp120-specific neutral-
izing antibodies and polyclonal serum antibodies from
persons infected with HIV-1 subtype A/C. For this pur-
pose, we used recombinant gp120 expressed in the N-
terminal fusion with a 62-amino acid non-glycosylated
fragment of mannan-binding lectin to drive gp120 trimeri-
zation and secretion and C-terminal His tag and V5 tag
[21,86]. These modifications of gp120 sequence contain
only naturally occurring PNGS present in consensus B
gp120, and, because they are the same for all preparations,
it is unlikely that protein backbone impacted the observed
differences in antibody reactivities. The gp120 glycoforms
were differentially recognized by the monoclonal as well
as polyclonal antibodies. As the gp120 produced in differ-
ent cell types had the same amino-acid sequence, it impli-
cates that differential cell type-specific glycosylation of
gp120 is the solely cause of the variation in antibody bind-
ing. Cell-specific differential glycosylation of Env was re-
ported to affect both epitope availability and epitope
formation, as N-glycans contribute to the proper folding
of gp120 [87].
The oligomeric consensus B gp120 that we used in this

study is glycosylated, depending on the producer cell type,
as we reported earlier [21]. We previously showed that hu-
man T cells (Jurkat) produce gp120 with the largest pro-
portion of high-mannose and hybrid N-glycans, whereas
HepG2 cells secrete gp120 with more complex N-glycans
and less high-mannose and hybrid oligosaccharides. The
greatest variability in glycosylation of gp120 produced by
different cell types was related to the relative contribution
of complex and hybrid N-glycans [21]. Based on the rela-
tive abundance of high-mannose oligosaccharides, the
oligomeric gp120 expressed in Jurkat and RD resembled,
at least partially, gp120 isolated from HIV-1 virions pro-
duced by peripheral blood mononuclear cells [56,88].
ly glycosylated recombinant gp120. SF162 or YU.2 pseudoviruses
g/well) were added to TZM-bl reporter cells, and 48 h later luciferase
ion of the infection of TZM-bl reporter cells, with pseudovirus alone
shown.



Figure 7 Inhibition of SF162 and YU.2 HIV-1 infectivity by differentially glycosylated recombinant gp120 preincubated with TZM-bl
indicator cells. SF162 and YU.2 pseudoviruses were added to TZM-bl reporter cells pre-incubated with serially diluted gp120 preparations (1 to
0.015 μg/well). The inhibition of the infectivity was determined and expressed as in Figure 6. Data from three independent experiments are shown.
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Here, we extended our previous analyses characte-
rizing differential reactivities of antibodies in sera from
HIV-1 clade B-infected individuals [21] to the antibodies
in sera from HIV-1 A/C-infected persons and a panel of
twelve monoclonal antibodies with five gp120 glyco-
forms, produced in HEK 293T, Jurkat, RD, HepG2, and
CHO cells. Unlike the antibodies in sera from HIV-1
subtype B-infected patients [21], the antibodies in sera
from HIV-1 A/C-infected persons reacted similarly with
all gp120 glycoforms. We can speculate that the observed
similar reactivities of sera from HIV-1 A/C-infected per-
sons with our set of consensus B gp120 glycoforms are
due to preferential recognition of highly conserved epi-
topes on gp120 which are less affected by differential gly-
cosylation than the clade-specific epitopes recognized by
sera from HIV-1 clade B-infected persons. Such epitopes
likely include also glycopeptides, as several PNGS and the
attached N-glycans are highly conserved in gp120 of HIV-
1 [37,89]. Nevertheless, such glycopeptides are prob-
ably not generally recognized by broadly neutralizing
antibodies, as the frequency of broadly neutralizing
glycopeptide-specific antibodies in HIV-1-infected in-
dividuals is quite low [40,44,45,90]. However, when
testing the binding of a panel of monoclonal gp120-
specific antibodies to gp120 glycoforms, we noted
marked differences for some of them. This difference
between polyclonal and monoclonal antibodies is prob-
ably due to recognition of a broad epitope spectrum by
serum antibodies vs. single epitope recognized by indi-
vidual monoclonal antibodies. After partial PNGase F-
driven deglycosylation of gp120, the differences in the
recognition of individual gp120 glycoforms by serum
antibodies increased, probably due to uneven degree of
PNGase F-driven deglycosylation and uncovering of
several glycan-shielded epitopes. In contrast, the dif-
ferences in reactivity of monoclonal antibodies with
partially deglycosylated gp120 were dependent on
localization of the particular epitopes. Specifically,
the recognition of gp120 glycoforms by monoclonal
antibodies against gp120 V3 loop apex (268 D4, F425
B4e8, 257 D4, 447-52D, 19b) and Manα1, 2Man-linked
glycan-specific (2G12) increased markedly. In contrast,
partial deglycosylation of gp120 glycoforms differentially
impacted the recognition by CD4-binding site-specific
antibodies (b12, VRC03, and VRC01): the binding of b12
did not change, VRC03 reactivity decreased, whereas re-
activity of VRC01 increased. Recent study using surface
plasmon resonance analyses demonstrated that VRC01
binds gp120 with high affinity whereas VRC03 reacts with
a 10-fold lower affinity [81]. Thus, VRC01 could act as a
partial CD4 agonist in the interaction with gp120, whereas
VRC03 does not display this effect [81]. The different
VRC03 and VRC01 sensitivity to gp120 deglycosylation
observed in this study suggests that VRC03 requires native
gp120 glycosylation for effective binding. Due to un-
changed proportions in VRC03 reactivities with individual
gp120 glycoforms before and after deglycosylation and the
observed overall decrease in VRC03 reactivities after de-
glycosylation, it could be proposed that glycans involved
in VRC03 epitope formation are similarly sensitive to
PNGase F treatment in all tested gp120 glycoforms. Fur-
thermore, we showed that PG9 and PG16 antibodies, spe-
cific to quaternary epitope composed of the gp120 V1/V2
and V3 loops and the associated glycans [40,91], exhibited
reduced reactivities with gp120 after partial deglycosyla-
tion. Recently, it was reported that changing the glycan
profile on the HIV-1 trimer using glycosidase inhibitors or
a mutant producer cell line resulted in HIV-1 strain-
specific changes in sensitivity to the neutralization activity
of PG-family of antibodies [40]. This observation is consist-
ent with disproportional changes in PG9 reactivities with
our set of gp120 glycoforms before and after partial glycan
removal. The reactivity of another monoclonal antibody
tested in our study, PGT121, specific for discontinuous epi-
tope composed of V3 base, the N332 oligomannose glycan
and surrounding glycans [47,92], decreased after partial de-
glycosylation of gp120. This suggests that in contrast to V3
loop which is known to protrude from Env [93], epitopes
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for monoclonal antibodies which are located in various
Env cavities are surrounded by glycans which contribute
to epitope formation as well as shielding. This conclu-
sion is supported by the observed changes in reactivities
of individual monoclonal antibodies before and after
partial deglycosylation of gp120 antigens. Comparison
of differences in the reactivities of 2G12 and PGT121
with native and PNGase F-treated gp120 glycoforms
suggested that conformational changes in V3 base and/
or removal of V1/V2-associated complex glycans could
explain the diminished reactivity of PGT121 with
PNGase F-treated gp120. Conversely, V3-base glycans
or at least some of those glycans involved in binding of
2G12 (N295, N332) are not affected by PNGase F treat-
ment under native condition [47,75,76,83,92].
Our approach could not distinguish between the glycan-

vs. protein-associated epitopes, as evidenced by the par-
tially retained reactivities of antibodies recognizing glycans
on the partially deglycosylated gp120 (PGT121, 2G12,
PG16, PG9) [40,47,48,83,91]. However, our tests character-
ized overall interactions of antibodies with differentially
glycosylated gp120 oligomers and discriminated between
various glycoforms of gp120 as targets for a panel of well
characterized broadly neutralizing monoclonal antibodies.
For PGT121, the data suggested that glycans removed by
PNGase F under native conditions contributed substan-
tially to PGT121 epitope formation. Moreover, the vari-
ability in PGT121 binding to individual gp120 glycoforms
after partial deglycosylation suggested that some glycans
were still present and involved in epitope formation
(Table 1). This interpretation is consistent with our previ-
ous finding that complete removal of all glycans requires
denaturing conditions [21] as well as with reports of
others [76] indicating that some glycans in oligomeric
gp140 and gp120/41 Env can be resistant to endoglycosi-
dase cleavage under native conditions.
A partial removal of N-glycans reduced differences in

monoclonal antibody binding to native gp120, indicating
that differential N-glycosylation affected formation and/or
accessibility of Env-specific epitopes, extending previous
observations for monoclonal antibody 19b [49,50]. In con-
trast, the binding of polyclonal antibodies from sera of
subtype A/C HIV-1-infected subjects to native recombi-
nant gp120 glycoproteins was similar for seven of nine
sera analyzed by ELISA. However, after partial removal of
N-glycans binding differences were detected for eight
of the nine sera. The most notable increase in reactivity of
polyclonal antibodies occurred after deglycosylation of
gp120 produced by CHO and HEK 293T (Figure 5), the
cells commonly used for production of vaccine antigens
for both experimental and clinical trials, including the first
partially successful RV144 trial [38,94]; this observ-
ation supports the concept that glycans may shield vari-
ous Env epitopes [4]. The antibody reactivity after gp120
deglycosylation was least pronounced for gp120 produced
by T cells, the primary host cell type infected by HIV-1.
Together, these findings underscore the importance of the
cell type for the production of gp120 as a vaccine antigen
for eliciting neutralizing antibodies or binding antibodies
for antibody-dependent cell-mediated viral inhibition
(ADCVI) [95].
Antibodies specific for glycans are associated mostly with

IgG2 and IgA2 subclasses, whereas antibodies specific for
proteins are predominantly IgG1 and IgA1 isotypes [96].
Thus, for vaccination purposes, the glycosylation of gp120
antigen should be considered in the strategies to induce
isotype-specific immune responses in the systemic and mu-
cosal compartments. In this regard, the results of the recent
RV144 trial suggest that IgG antibodies targeting V1/V2
gp120 region may have contributed to protection against
HIV-1 infection, whereas high levels of Env-specific IgA
antibodies in serum may have mitigated the effects of pro-
tective antibodies [39,97]. Studies addressing this point are
in progress in our laboratories.
To test the hypothesis that differential gp120 glycosyla-

tion affects HIV-1 entry into host cells, and consequently
infectivity, we analyzed the capacity of recombinant gp120
glycoforms to inhibit the in vitro infection of reporter cells
by two HIV-1 pseudotyped viruses, SF162 and YU.2. The
gp120 produced in Jurkat and CHO cells was the most ef-
fective at inhibiting infection by both HIV-1 strains. As we
reported earlier, the greatest variability in glycosylation of
gp120 produced by different cell lines was the relative
abundance of complex and high-mannose and hybrid N-
glycans. Notably, the two gp120 glycoforms from Jurkat
and CHO cell lines contained less complex and hybrid gly-
cans compared to high-mannose glycans [21], resembling
the glycan patterns of gp120 on virions [56,88]. Potentially
a more direct and biologically relevant way to test the ef-
fects of cell-type specific glycosylation of HIV-1 gp120
would be to produce HIV-1 pseudotyped viruses in differ-
ent cell types and then characterize the differences in their
infectivity or sensitivity to broadly neutralizing antibodies.
Although we attempted this very challenging approach,
we have not succeeded to produce sufficient amount of
pseudotyped viruses for our experiments, in contrast to
the production of recombinant gp120 in stably transfected
cells. Furthermore, it would not be possible to unambigu-
ously attribute all potentially observed changes to cell-type
specific glycosylation differences because each cell type
may be distinctly sensitive to HIV-1 viral regulatory pro-
teins. The main goal of this study was to assess how the
differences in glycosylation, according to the producer cell
type, affect recognition by HIV-1 gp120-specific neutraliz-
ing and serum antibodies and how they affect interaction
with HIV receptors on the reporter cells.
In conclusion, although the production of recombi-

nant gp120 is higher in standard cell types used for
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biotechnology applications (e.g., HEK293), other cell
types, such as T cells (Jurkat) produce gp120 antigen
with a glycosylation profile resembling that on HIV-1 vi-
rions [21]. Jurkat-produced gp120 is well recognized by
broadly neutralizing monoclonal antibodies, including
the glycan-dependent antibodies PG9 and PGT121, and
effectively competes with HIV-1 virions in binding the
receptors on reporter cells.

Conclusion
Together our data revealed that: Recognition of gp120
by V3-loop-specific monoclonal antibodies was hindered
by differential glycosylation of gp120; The recognition of
CD4-binding sites by VRC03 and VRC01 was distinctly
affected by neighboring glycans, with some of them con-
tributing to CD4-binding site formation (VRC03) and
others masking the access to CD4-binding site (VRC01);
The reactivity of PGT121 (recognizing V3 base, the N332
oligomannose glycan, and surrounding glycans) was re-
duced after partial N-glycan removal, indicating that some
N-glycans contribute substantially to PGT121 epitope for-
mation; Differences in reactivities of polyclonal serum
antibodies from subjects infected with HIV-1 subtype A/C
with individual gp120 glycoforms were modest, unlike
those observed for subjects infected with HIV-1 subtype
B. However, the reactivites increased after partial glycan
removal for some gp120 glycoforms; The gp120 produced
by T cells and CHO cells most effectively blocked infec-
tion of reporter cells by HIV-1 virions.
In summary, we show that cell type-specific glycosyla-

tion of oligomeric gp120 impacts recognition by serum
antibodies from HIV-1-infected subjects and by mo-
noclonal gp120-specific antibodies. Furthermore, cell
type-specific glycosylation of gp120 affects its ability to
compete with HIV-1 and inhibit infection of TZM-bl re-
porter cells. This suggests that glycosylation influences
the binding of gp120 to cellular receptors/co-receptors
and consequently affects the receptor-mediated HIV-1
infection of target cells. Cell type-specific differential gly-
cosylation is characterized by variability in the number
and content of complex and high-mannose/hybrid N-
glycans. Importantly, T cells produced gp120 glycoforms
similar to the high content of high-mannose and hybrid
glycans found on gp120 of isolated virions [56]. Thus, the
glycosylation machinery of cells that produce gp120 shapes
its glycosylation and, consequently, impacts antibody re-
activity, underscoring the importance of differential gp120
glycosylation in the design of HIV-1 Env vaccines.

Methods
Human sera
Serum samples were obtained from subjects infected
with HIV-1 subtype A and/or C not receiving anti-
retroviral therapy in the Mbeya Region of Southwestern
Tanzania (HIV Superinfection Study; HISIS), as detailed
in previous publications [98-100]. HIV-1 gp120-specific
titers of serum IgG antibodies were measured by ELISA,
as previously reported [100].
Monoclonal anti-gp120 antibodies 268 D4 (recognizes

epitope HIGPGR on V3 loop), F425 B4e8 (recognizes
epitope GPGRA on V3 loop), 257 D4 (recognizes epi-
tope KRIHI on V3 loop), 447-52D (recognizes epitope
GPGR on V3 loop), 19b (recognizes apex of V3), 2G12
(recognizes discontinuous epitope composed of clusters
of Manα1,2Man-linked glycans on the “silent face” of
gp120), b12 (recognizes an epitope overlapping the CD4
binding site), PGT121 (recognizes discontinuous epitope
composed of V3 base, the N332 oligomannose glycan
and surrounding glycans, including a putative V1/V2
complex biantennary glycan), PG9 and PG16 (recognize
an epitope consisting of the gp120 V1/V2 and V3 loops
and associated glycans), VRC01 and VRC03 (recognize
the CD4-binding site) were obtained from the NIH
AIDS Research and Reference Reagent Program, Div-
ision of AIDS, NIAID, NIH [40,46-54] (Table 1).

Recombinant HIV-1 gp120 preparations
Human cell lines, including human embryonic kidney cell
line HEK 293T, the Jurkat T-cell line, rhabdomyosarcoma
cell line RD, and hepatocellular carcinoma cell line
HepG2, and Chinese hamster ovary cells (CHO), were ob-
tained from ATCC. Cells were stably transfected with plas-
mid encoding a codon-optimized consensus B gp120
DNA (GenBank DQ667594 fragment 88–1485) fused N-
terminally with cDNA coding for the first 62 amino acids
of human mannan-binding lectin (MBL; GeneBank
EU596574 fragment 66–252) and C-terminally with His
and V5-tag to express the recombinant gp120 in oligo-
meric form. These modifications of gp120 sequence did
not contain any PNGS, and being the same for all prepara-
tions have not likely impacted the results. Structure and
glycosylation of all five gp120 variants were described pre-
viously [21,86]. Each cell clone was used to isolate at least
200 μg of glycoprotein. The gp120 was purified by affinity
nickel-nitrilotriacetic acid (Ni-NTA) agarose under native
conditions [21]. The concentration of recombinant glyco-
proteins was determined by BCA protein assay (Pierce,
Rockford, IL) and verified by densitometric analysis of
Coomassie blue-stained protein bands after SDS-PAGE
(BioRad, Hercules, CA) using ImageJ 1.41a software. The
recombinant glycoproteins were aliquoted and stored
at −80°C.

ELISA and glycan removal from gp120
To determine the reactivity of monoclonal antibodies or
IgG in the sera of HIV-1-infected subjects, ELISA Maxi-
Sorp plates (Nalge Nunc, International, Rochester, NY,
USA) were coated overnight with 100 μl of 1 μg/ml mouse
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anti-penta-His monoclonal antibody (Qiagen, Valencia,
CA, USA). After blocking with SuperBlock (Pierce) sup-
plemented with 0.05% Tween 20 (SB-T), 0.05 μg of native
gp120 or partially deglycosylated gp120 were added to
each well and incubated overnight at 4°C. To remove N-
glycans without gp120 denaturation, treatment with endo-
glycosidase PNGase F was optimized to reach maximal
glycan removal under native conditions as determined by
mobility shift on Western blot (7.5 IUB PNGase F per
250 ng of gp120 protein in PBS, incubated for 24 h). All
assays were performed in duplicate or triplicate, depend-
ing on the amount of monoclonal antibodies or sera avail-
able. Antibodies were titrated in ELISA using recombinant
oligomeric consensus B gp120 produced in HEK 293T
cells captured on anti-penta-His monoclonal antibody-
coated plates. Assays were performed using three dilutions
of monoclonal antibodies or sera corresponding to the lin-
ear portion of the titration curve; the middle dilution was
used for statistical analyses. Antibodies bound to the
gp120 were detected with HRP-labeled goat anti-human
IgG (Sigma, St. Louis, MO, USA) followed by the peroxid-
ase substrate O-phenylenediamine-H2O2. The reaction
was stopped with 1 M sulphuric acid and the absorbance
measured at 490 nm [21,101].
To detect possible differences in the binding of native

vs. deglycosylated gp120 to the anti-penta His antibody-
coated wells on ELISA plate, we compared the binding
of anti-V5-tag monoclonal antibody to the gp120 prepa-
rations. No differences were detected in the binding of
anti-V5-tag.

Inhibition of HIV-1 infectivity by recombinant gp120
Serial dilutions (1 to 0.015 μg/well) of recombinant gp120
in DMEM medium without fetal calf serum were ad-
ded to ~60% confluent TZM-bl reporter cells contai-
ning reporter cassettes of luciferase and β-galactosidase
[4,102-106]. Either immediately or after 1 h pre-incubation
at 37°C, an equal volume of YU.2 or SF162 Env-
pseudotyped R5 virus (200 median tissue culture infective
dose, TCID50; corresponding to 150,000 relative lumines-
cence units, RLU) in medium containing 20% FCS and
30 μg/ml DEAE dextran MW 500,000 (Sigma) was added
to each well. The viruses were produced in HEK 293T
cells [104]. After 48-h incubation at 37°C with 5% CO2,
75 μl of lysis buffer (Promega, Madison, WI, USA) was
added to each well, and plates were submitted to three
cycles of freeze-thaw. The luciferase activity of the cell
lysates (25 μl/well) was measured with a luminometer after
the addition of luciferase substrate (Promega). The rea-
dings of RLU are directly proportional to the number of
infectious virus particles, indicating that the reduction in
RLU in wells with gp120 reflects blockade of infection. The
results are expressed as % inhibition of HIV-1 infectivity of
TZM-bl target cells, with virus alone considered 100%.
SDS-PAGE/Western blots
The gp120 preparations were separated by SDS-PAGE
under reducing conditions and blotted on PVDF mem-
branes. Membranes were blocked with SB-T and deve-
loped with anti-gp120 monoclonal antibody or mounted
into Mini-PROTEAN II Multiscreen Apparatus (BioRad)
and developed with sera from HIV-1-infected or healthy
control subjects. The HIV-1-positive sera were diluted to
a final concentration of 0.2 μg/ml gp120-specific IgG, pre-
viously determined by ELISA [100]; control sera from
healthy subjects were diluted 1:200, which means ten time
less diluted than average dilution used for HIV-1 positive
sera to exclude non-specific binding. The PVDF mem-
branes were incubated overnight with monoclonal anti-
bodies or sera, and then developed with HRP-conjugated
goat anti-human IgG antibody (Sigma). The peroxidase-
positive bands were detected with SuperSignal West Pico
(Pierce) and visualized by exposure on X-ray film (Kodak)
or by using a cooled CCD camera (Roche Diagnostic
Corp., Indianapolis, IN, USA). The HRP-conjugated anti-
V5-tag antibody (Invitrogen, Carlsbad, CA, USA) diluted
1:7,000 in SB-T was used as a positive control.

Dot-blot analysis
To detect gp120-specific antibodies in sera, 50 ng of
recombinant gp120 proteins were applied to each well
of a 96-well plate with a PVDF membrane (Multi-
Screen IP Filer Plate; Millipore, Billerica, MA) and in-
cubated overnight at 4°C. After blocking with SB-T,
sera diluted as described for the Western blot analysis
were added, and the plates were incubated overnight at
4°C. The bound antibodies were detected as described
for the Western blot analysis.

Densitometric analysis
To compare the binding intensity of anti-gp120 antibodies
to differentially glycosylated gp120, the densities of bands
obtained by Western blot and of dots detected by dot-blot
assay were analyzed by ImageJ 1.41a software. Densito-
metry was performed using calculated background-cor-
rected integrated density over the area adjusted for the
largest band or dot of the analyzed gp120.

Statistical analysis
Differences between groups and statistical significance was
determined by utilizing analysis of variance (ANOVA) and
paired t-test. All statistical analyses were performed using
SPSS v. 21 statistical package (IBM Corp., Armonk,
NY, USA).
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