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Abstract 

Background: Entry inhibitors, such as Maraviroc, hold promise as components of HIV treatment and/or pre-exposure 
prophylaxis in Africa. Maraviroc inhibits the interaction between HIV Envelope gp120 V3-loop and CCR5 coreceptor. 
HIV-1 subtype C (HIV-1-C) is predominant in Southern Africa and preferably uses CCR5 co-receptor. Therefore, a signifi-
cant proportion of HIV-1-C CXCR4 utilizing viruses (X4) may compromise the effectiveness of Maraviroc. This analysis 
examined coreceptor preferences in early and chronic HIV-1-C infections across Africa.

Methods: African HIV-1-C Envelope gp120 V3-loop sequences sampled from 1988 to 2014 were retrieved from Los 
Alamos HIV Sequence Database. Sequences from early infections (< 186 days post infection) and chronic infections 
(> 186 days post infection) were analysed for predicted co-receptor preferences using Geno2Pheno [Coreceptor] 10% 
FPR, Phenoseq-C, and PSSMsinsi web tools. V3-loop diversity was determined, and viral subtype was confirmed by 
phylogenetic analysis. National treatment guidelines across Africa were reviewed for Maraviroc recommendation.

Results: Sequences from early (n = 6316) and chronic (n = 7338) HIV-1-C infected individuals from 10 and 15 African 
countries respectively were available for analyses. Overall, 518/6316 (8.2%; 95% CI 0.7–9.3) of early sequences were X4, 
with Ethiopia and Malawi having more than 10% each. For chronic infections, 8.3% (95% CI 2.4–16.2) sequences were 
X4 viruses, with Ethiopia, Tanzania, and Zimbabwe having more than 10% each. For sequences from early chronic 
infections (< 1 year post infection), the prevalence of X4 viruses was 8.5% (95% CI 2.6–11.2). In late chronic infections 
(≥ 5 years post infection), X4 viruses were observed in 36% (95% CI − 16.3 to 49.9), with two countries having rela-
tively high X4 viruses: South Africa (43%) and Malawi (24%). The V3-loop amino acid sequence were more variable in 
X4 viruses in chronic infections compared to acute infections, with South Africa, Ethiopia and Zimbabwe showing the 
highest levels of V3-loop diversity. All sequences were phylogenetically confirmed as HIV-1-C and clustered according 
to their co-receptor tropism. In Africa, Maraviroc is registered only in South Africa and Uganda.

Conclusions: Our analyses illustrate that X4 viruses are present in significantly similar proportions in early and early 
chronic HIV-1 subtype C infected individuals across Africa. In contrast, in late chronic infections, X4 viruses increase 
3–5 folds. We can draw two inferences from our observations: (1) to enhance the utility of Maraviroc in chronic HIV 
subtype C infections in Africa, prior virus co-receptor determination is needed; (2) on the flip side, research on the effi-
cacy of CXCR4 antagonists for HIV-1-C infections is encouraged. Currently, the use of Maraviroc is very limited in Africa.
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Background
Data from the Joint United Nations Programme on 
HIV/AIDS (UNIAIDS) shows that about 38 million 
people were living with HIV infection at the end of 
2018, 68% of this number are in Africa [1]. The UNAIDS 
90–90–90 target translates to 90% of all persons to be 
tested for HIV, 90% of those infected should be on treat-
ment, and 90% of those on treatment should have their 
viral load suppressed to undetectable levels. In this 
scheme, treatment is expected to act as a prevention 
tool, since the chances of transmission is highly reduced 
when viral load is undetectable [2–5]. Combination 
antiretroviral therapy (cART) is the gold standard for 
the management of HIV infections. In most develop-
ing countries, nucleoside and non-nucleoside reverse 
transcriptase inhibitors are the backbone of all first and 
second line of antiretroviral regimens in adults, with a 
boosted protease component for children in first line 
treatment [6–9].

The goal of cART is to rapidly reduce HIV viral load 
to undetectable levels, thereby permitting the reconsti-
tution of immune function as measured by rising levels 
of CD4+ cell counts. The increasing ease of access to 
cART across Africa has tremendously reduced morbid-
ity and mortality due to HIV infection [10–14]. However, 
treatment is not curative, and a significant proportion of 
individuals will fail first line and second line regimens 
making them legible for salvage therapy. Maraviroc, an 
entry inhibitor, is gaining significance as part of treat-
ment regimens in the United States and elsewhere [15–
17], but there is little documentation of its use in Africa, 
even as salvage therapy.

Maraviroc inhibits viral entry by prohibiting the inter-
action between HIV Envelope gp120 V3-loop and the 
CCR5 co-receptor, following the interaction of Gp120 
with the CD4 molecule [18–21]. High tolerability, 
safety, and efficacy in viral reduction in both treatment 
experienced and naïve patients have been demonstrated 
for Maraviroc, making it a valuable treatment option 
against HIV/AIDS [22]. It has been reported that amino 
acid substitutions, particularly by glycine, in the V3 
loop crown motive may reduce the binding efficiency of 
gp120 to CCR5 [23]. Globally, about 47% of infections 
are due to HIV-1 subtype C (HIV-1-C) [24], and HIV-
1-C overwhelmingly dominates infections in Southern 
Africa [25–27]. It is not conclusive how and why HIV-
1-C appears to be more transmissible than other mem-
bers of HIV Group M and how it became the dominant 
variant in Southern Africa. However, some Ex-vivo 
pathogenic fitness studies and long-term natural history 
cohorts in Uganda and Zimbabwe have suggested that 
subtype C is the least fit subtype among HIV-1 group 
M. Their lower virulence leads to longer asymptomatic 

periods which could explain their continuous domi-
nance and expansion in the HIV global pandemic [28, 
29]. Further, phylogeography reconstruction models of 
HIV polymerase sequences [30], have shown that HIV-
1-C may have originated from Lubumbashi and Mbuji-
Mayi (cities in the Democratic Republic of Congo) from 
where it was transmitted to Southern Africa, facilitated 
by the developed and busy road and rail networks in 
the 1960s. In addition [31], had demonstrated that 
conserved V1–V2 loops and V3-316T, which occur at 
higher frequencies in HIV-1-C, increase viral infectivity; 
and proposed that this could be responsible for the rela-
tively high transmissibility of HIV-1-C heterosexually.

A significant majority of the initial infecting HIV-1-C 
viruses utilize CCR5. However, the presence of a sig-
nificant proportion of CXCR4 utilizing viruses (X4) in 
chronic HIV-1-C infection [32–34] might compromise 
the effectiveness of CCR5 antagonists, such as Maravi-
roc, when included as components in salvage therapy. In 
the current analyses, co-receptor preference in early and 
chronic HIV-1-C infections across Africa was examined, 
using sequences from the Los Alamos HIV Sequence 
Database, with the view of understanding the co-receptor 
preference landscape of the epidemiologically important 
HIV-1-C across the continent. We also examine litera-
ture for indications of active use of Maraviroc in Afri-
can countries. The association of viral tropism to stage 
of infection and mode of transmission were examined. 
We observed that X4 viruses are present in similar pro-
portions in early (less than 6 months post infection) and 
early chronic (less than 1 year post infection) HIV-1 sub-
type C infected individuals across Africa. On the con-
trary, in late chronic infections, there is a significant 3–5 
fold increase in X4 viruses. Although there is currently a 
limited use of Maraviroc across Africa, our findings could 
be useful in the development of treatment management 
guidelines in regions where HIV-1 subtype C drives the 
epidemic.

Methods
Sequence search and extraction
HIV-1 subtype C Gp120 V3-loop Sanger generated 
sequences were extracted from the Los Alamos HIV 
Sequence Database (https ://www.hiv.lanl.gov/conte 
nt/index ) using the sequence search interface. Firstly, 
sequences were searched and extracted for each African 
country based on early and chronic infections. In this 
study, early infection was defined as the period com-
prising HIV infection, seroconversion, and recent infec-
tion [35] and chronic infection was defined as the period 
post recent infection. Most of the sequences retrieved 
were generated when tests to measure HIV RNA, and 
thus detect acute infections were not available in many 

https://www.hiv.lanl.gov/content/index
https://www.hiv.lanl.gov/content/index
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African countries. Secondly, extracted sequences were 
categorized according to the following: route of infection 
(mother-to-child transmission (MTCT) and heterosexual 
transmission), and disease progression (slow and rapid 
progressors). Problematic sequences and those with no 
data on seroconversion dates were excluded from the 
analyses.

Co‑receptor prediction and sequence analyses
Sequences were classified as early (< 186 days post infec-
tion) and chronic infections (> 186  days post infection). 
Sub-classifications included early chronic infection 
(186 days to 1 year post infection) and late chronic infec-
tions (> 5  years post infection). Sequences were sepa-
rately analysed for predicted co-receptor preferences 

HIV-1 subtype C V3 loop sequences from African countries
• Total retrieved = 14641 

Early infection
• Total extracted = 6316

Chronic infection
• Total extracted = 7338

Phylogenetic analysis
• Biotype clustering 

Co-receptor prediction with the following web tools:
• Geno2pheno
• PhenoSeq
• PSSM-C

Sequences extracted based on Risk factors
• Total MTC transmission = 1052
• Total Heterosexual = 3289
• Slow progressor = 145
• Rapid progressor =169
• Other = 1661

Sequences extracted based on Risk factors
• Total MTC transmission = 2115
• Total Heterosexual = 2480
• Slow progressor = 158
• Rapid progressor =141
• Other = 2444

V3 loop amino acid diversity
• Entropy plots
• AA net charge 
• AA length
• N-glycosylation
• Crown motif

• Total analyzed = 13654

Sequences excluded, due to lack of 
seroconversion data

• Total = 987

Fig. 1 Flow chart illustrating the study procedure: sequence extraction, categorization, co-receptor prediction and diversity analysis
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using Geno2Pheno [Coreceptor] 10% FPR (https ://corec 
eptor .geno2 pheno .org/), Phenoseq-C (http://tools .burne 
t.edu.au/pheno seq/), and PSSMsinsi (https ://indra .mulli 
ns.micro biol.washi ngton .edu/webps sm/) web tools. 
Phenoseq-C and PSSMsinsi are particularly HIV-1-C 
based co-receptor prediction tools [36–39]. An inferred 
concordance of all three tools was used to assign the co-
receptor biotype. Gp120 V3-loop diversity was deter-
mined for both R5 and X4 viruses by entropy plotting, 
amino acid length, net charge, N-glycosylation and crown 
motif examination. The genetic subtype was confirmed 
by phylogenetic analysis. Figure 1 illustrates an outline of 
the procedures used in the study.

Active use of Maraviroc in Africa
To estimate the active use of Maraviroc in Africa, 
national ART guidelines and documents on ARV approv-
als were retrieved by Google search and reviewed for 
the recommendation and approval of Maraviroc. Search 
terms included: national ART guidelines AND [African 
country], and this was done for all African countries. 
We also reviewed the recent summary statement of HIV 
treatment regimens in Africa, 2017 [40].

Statistical analyses
To statistically assess the differences between frequen-
cies, a Fisher’s exact test was conducted; confidence 
intervals at the 95% threshold were calculated to esti-
mate the interval estimate of a population mean; using 
an online GraphPad QuickCalcs tool (https ://www.graph 
pad.com/quick calcs /conti ngenc y1.cfm). Significant dif-
ferences were implied when p-values were < 0.05.

Results
HIV-1 subtype C Gp120 V3-loop co-receptor was pre-
dicted, analysed and categorized according to early or 
chronic infections in general, route of transmission 
(mother-to-child and heterosexual), and pathogenesis 
(slow and rapid progressors). In addition, the V3-loop 
amino acid diversity in terms of amino acid length, 
entropy, net charge and N-glycosylation sites were fur-
ther analysed (Fig. 1). Sequences used for these analyses 
were obtained from the Los Alamos HIV Sequence data-
base, spanned from 1998 through 2014 and originated 
from 15 out of 54 (27.8%) African countries. These coun-
tries were mostly from East and Southern Africa where 
subtype C is most prevalent. A total of 14,641 HIV-1-C 
gp120 V3-loop sequences were retrieved. Of these, 
987 were excluded due to lack of seroconversion date, 

Table 1 Co-receptor prediction using sequences from  African HIV-1 subtype C early (< 6  months of  seroconversion) 
and chronically (> 6 months of seroconversion) infected individuals

NA not available

African countries Predicted biotype

Early Chronic

Total (%) X4 (%) R5 (%) Total (%) X4 (%) R5 (%)

Total sequences analyzed 6316 518 (8.2%; 95% CI 
0.7–9.3)

5798 (91.8%; 95% CI 
90.7–99.3)

7338 612 (8.34%; 95% CI 
2.4–16.2)

6726 (91.7%; 
95% CI 
84.8–97.5)

Botswana (BW) 1401 (22.2) 68 (4.9) 1333 (95.1) 1604 (21.9) 96 (6) 1508 (94)

Burundi (BI) NA NA NA 4 (0.05) 0 4 (100)

Congo (CD) NA NA NA 18 (0.25) 0 18 (100)

Ethiopia (ET) 20 (0.32) 3 (15) 17 (85) 164 (2.2) 56 (34) 108 (66)

Gabon (GA) NA NA NA 2 (0.03) 0 2 (100)

Gambia (GM) NA NA NA 3 (0.04) 1 (33.3) 2 (66.6)

Guinea-Bissau (GW) NA NA NA 7 (0.1) 0 7 (100)

Kenya (KE) 2 (0.03) 0 2 (100) 12 (0.2) 0 12 (100)

Malawi (MW) 2100 (33.2) 339 (16.1) 1761 (83.9) 2591 (35.3) 164 (6.3) 2427 (93.7)

Rwanda (RW) 109 (3) 0 109 (100) 8 (0.1) 0 8 (100)

Senegal (SN) 3 (0.06) 0 3 (100) NA NA NA

South Africa (ZA) 1246 (19.7) 59 (4.7) 1187 (95.3) 1151 (15.7) 121 (10.5) 1030 (89.5)

Tanzania (TZ) 86 (1.4) 5 (5.8) 81 (94.2) 376 (5.1) 62 (16.5) 314 (83.5)

Zambia (ZM) 1345 (21.3) 44 (3.3) 1301 (96.7) 1353 (18.4) 100 (7.4) 1253 (92.6)

Zimbabwe (ZW) 4 (0.06) 0 4 (100) 44 (0.6) 12 (26) 32 (74)

Uganda (UG) NA NA NA 1 (0.01) 0 1 (100)

https://coreceptor.geno2pheno.org/
https://coreceptor.geno2pheno.org/
http://tools.burnet.edu.au/phenoseq/
http://tools.burnet.edu.au/phenoseq/
https://indra.mullins.microbiol.washington.edu/webpssm/
https://indra.mullins.microbiol.washington.edu/webpssm/
https://www.graphpad.com/quickcalcs/contingency1.cfm
https://www.graphpad.com/quickcalcs/contingency1.cfm
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affording 13,654 sequences, of which 6316 were from 
early infections, and 7338 were from chronic infections 
(Table 1 and Fig. 1).

Co‑receptor biotype prediction
A total of 6316 HIV Gp120 V3-loop Sanger generated 
sequences from early HIV-1 subtype C infections were 
available from 10 countries, namely; Botswana, Ethiopia, 
Kenya, Malawi, Rwanda, Senegal, South Africa, Tanza-
nia, Zambia, and Zimbabwe. For chronic infections, 7338 
sequences were available from 15 countries, namely; Bot-
swana, Burundi, DR Congo, Ethiopia, Gabon, Gambia, 
Guinea Bissau, Kenya, Malawi, Rwanda, South Africa, 
Tanzania, Uganda, Zambia, and Zimbabwe. Analyses 
of all early infection sequences showed that 518/6316 
(8.2%; 95% CI 0.7–9.3) were of X4 variant while 5798 
(91.8%; 95% CI 90.7–99.3) were R5 (Table  1). Ethiopia 
(3/20; 15.0%) and Malawi (339/2100; 16.1%) had more 
than 10% of X4 using viruses. For all chronic infections, 
612/7338 (8.34%; 95% CI 2.4–16.2) of the sequences 
were X4-tropic, with four countries, Ethiopia, South 
Africa, Tanzania, and Zimbabwe each having about 
10% or more (Table 1). Overall, there was no difference 
in the proportion of X4 viruses in early (8.2%) versus all 

chronic infections (8.3%) (p = 0.8;  X2 = 0.064). When 
sequences, from early chronic infections (> 186  days to 
< 1  year post-infection) were considered, the prevalence 
of X4 viruses was 156/1832 (8.5%; 95% CI 2.6–11.2). For 
chronic infections ≥ 186 day, X4 viruses were present in 
64/179 (36%; 95% CI − 16.3 to 49.9) of the study popula-
tion (p = 0.0001;  X2 = 65.257), with two countries having 
relatively high X4 prevalence: South Africa (43%; 58/136) 
and Malawi (24%, 6/25).

Co‑receptor biotype prediction according to mode 
of transmission
Of the 6316 acute HIV infection sequences, 1052 were 
from cases of MTCT. Of these, only 46/1052 (4.4%; 95% 
CI − 1.5 to 6.5) were X4-tropic. Country-wise, Malawi 
and Tanzania marginally had more X4 viruses (6% and 
6.1% respectively) in early infections (Table 2). In compar-
ison, among chronic infections, 143/2115 (6.8%; 95% CI 
− 10.9 to 31.5) were X4-tropic viruses, with South Africa 
having a significantly higher number of X4 viruses (40.4%; 
p = 0.001;  X2 = 30.288). The proportion of X4 viruses in 
early MTCT sequences was not significantly different 
from chronic MTCT cases; 4.4% (46/1052) versus 6.7% 
(143/2115) (p = 0.535;  X2 = 0.385) respectively (Table 2).

Table 2 Co-receptor prediction using sequences from HIV-1 subtype C mother-to-child and heterosexual transmissions

NA not available

Predicted biotype

Early Chronic

Total (%) X4 (%) R5 (%) Total (%) X4 (%) R5 (%)

Mother-to-child transmission

 Total sequence 1052 46 (4.4%; 95% CI − 1.5 
to 6.5)

1006 (95.6%; 95% CI 
93.5, 101.5)

2115 143 (6.8%; 95% CI 
− 10.9 to 31.5)

1972 (93.2%; 95% CI 
68.5–110.9)

 Malawi (MW) 691 (65.6) 41 (5.9) 650 (94.1) 1693 (80) 63 (3.7) 1630 (96.3)

 South Africa (ZA) 11 (1.1) 0 11 (100) 151 (7.1) 61 (40.4) 90 (59.6)

 Tanzania (TZ) 49 (4.7) 3 (6.1) 46 (93.9) 1 (0.04) 0 1 (100)

 Zambia (ZM) 297 (28.2) 2 (0.7) 295 (99.3) 263 (12.4) 19 (7.2) 244 (92.8)

 Zimbabwe (ZW) 4 (0.4) 0 4 (100) 7 (0.33) 0 7 (100)

Heterosexual transmission

 Total sequences 
analyzed

3289 385 (11.7%; 95% CI 
− 1.8 to 13.9)

2904 (88.3%; 95% CI 
86.4–101.8)

2480 231 (9.3%; 95% CI − 0.9 
to 13.5)

2249 (90.7%; 95% CI 
86.5–100.9)

 Botswana (BW) 29 (0.9) 1 (3.4) 28 (96.6) 4 (0.16) 0 4 (100)

 Ethiopia (ET) 1 (0.03) 0 1 (100) 10 (0.4) 0 10 (100)

 Kenya (KE) 1 (0.03) 0 1 (100) 22 (0.7) 0 22 (100)

 Malawi (MW) 1237 (37.6) 274 (28.5) 963 (71.5) 856 (34.3) 89 (11) 762 (89)

 Rwanda (RW) 96 (2.9) 0 96 (100) 6 (0.2) 0 6 (100)

 South Africa (ZA) 927 (28.2) 66 (7.1) 861 (92.9) 506 (20.4) 19 (3.6) 487 (96.4)

 Tanzania (TZ) 36 (1.1) 2 (5.5) 34 (94.5) 174 (7) 55 (32.4) 119 (67.6)

 Uganda (UG) NA NA NA 1 (0.04) 0 1 (100)

 Zambia (ZM) 962 (29.3) 42 (4.4) 920 (95.6) 875 (35.3) 61 (7) 814 (93)

 Zimbabwe (ZW) NA NA NA 26 (1) 2 (8.3) 24 (91.7)
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A total of 5769 sequences from both early and chronic 
heterosexual transmissions were analysed for X4 tro-
pism. Overall, 385/3289 (11.7%; 95% CI − 1.8 to 13.9) of 
early infections were X4-tropic, versus 231/2480 (9.3%; 
95% CI − 0.9 to 13.5) for chronic infections (p = 0.6446; 
 X2 = 0.213). Country-wise, Malawi had the most X4 
viruses in early heterosexual transmissions (28.5%; 
p = 0.0047;  X2 = 8.000), and Tanzania had the most X4 
viruses in chronic heterosexual transmissions (32.4%; 
p = 0.0001;  X2 = 30.042), both of which were significant 
(Table 2).

Co‑receptor biotype prediction according to disease 
progression
Sequences from slow and rapid progressors from South 
Africa and Zambia were also available in significant 
numbers for analyses. There were no X4 tropic variants 
among the 145 early infection sequences from slow pro-
gressors. Among the 158 sequences from chronic slow 
progressors, 2/158 (1.3%; 95% CI 0–0) were X4 tropic, 
all from South Africa. The rapid progressors had a total 
of 169 early infections sequences none of which was X4; 
while 55/141 (39%) of the chronic sequences, were X4, 
from South Africa. A significantly higher proportion of 
sequences from chronic rapid progressors were of X4 
tropic compared to those from chronic slow progressors 
(p = 0.001;  X2 = 45.995) (Table 3).

HIV‑1 subtype C gp120 V3‑loop diversity in Africa
In order to perform V3-loop diversity analyses, sequences 
were available for seven countries, namely; Botswana, 
Ethiopia, Malawi, Tanzania, South Africa, Zambia, and 
Zimbabwe (Table  4). The least amino acid substitu-
tions (measured by entropy) was observed in X4 and R5 
sequences for both early and chronic infections from 

Botswana ranging from 0–1 and 0–1.25 respectively; 
while Ethiopia and Malawi had sequences with the high-
est entropy (range 0–1.915) in both early and chronic 
sequences of X4 and R5 variants. High levels of entropy 
were seen in positions 12, 25, 29 and 32 for both the R5 
and X4 viruses (Fig. 2).

N-glycosylation sites play key roles in the interaction 
between the virus, CD4 molecule and the CCR5 and 
CXCR4 co-receptors; as well as aiding the virus to evade 
neutralization by host immune response. R5 and X4 
viruses of early and chronic infections from Tanzania had 
a highly conserved N-glycosylation site while Botswana, 
Ethiopia, Malawi, South Africa, and Zambia had very few 
sequences that lost the N-glycosylation site (Table 4). On 
the contrary, sequences from Ethiopia showed the high-
est frequency of X4 viruses that had lost the N-glycosyla-
tion site for acute (67%) and chronic (46.9%) infections 
(Table 4, Fig. 3).

The crown motive (GPGQ) was very much conserved, 
except for Botswana for which about 77% of sequences 
from X4 viruses of early infections had Q → R (40.3%) 
and Q → K (35.8%) substitutions; while about 99% of 
sequences from chronic infections had Q → R (77%) 
and Q → K (22.6%) substitutions among the X4 viruses 
(Table 4). The amino acid lengths were shorter for early 
than chronic R5 or X4 viruses ranging between 34 and 35 
for early and 34–38 for chronic infections. There was no 
particular trend in the V3-loop amino acid length across 
the countries (Table 5). The V3-loop net charge for both 
early and chronic X4 viruses were generally higher, rang-
ing from 1 to 10, and lower in R5 viruses which ranged 
from 1 to 6 (Table 5).

As expected, a higher level of gp120 V3-loop amino 
acid variation was observed in X4 tropic viruses from 
chronic than early infections, with South Africa, 

Table 3 Co-receptor prediction using sequences from  HIV-1 subtype C slow and  rapid progressors during  early 
and chronic infections

95% confidence intervals for all the prevalences were zero

NA not available

Predicted biotype

Early Chronic

Total (%) X4 (%) R5 (%) Total (%) X4 (%) R5 (%)

Slow progressors

 Total sequences 145 0 (0) 145 (100) 158 2 (1.3) 156 (98.7)

 South Africa (ZA) 63 (43.4) 0 (0) 63 (100) 158 (100) 2 (1.3) 156 (98.7)

 Zambia (ZM) 82 (56.6) 0 (0) 82 (100) NA NA NA

Rapid progressors

 Total sequences 169 0 (0) 169 (100) 141 55 (39) 86 (61)

 South Africa (ZA) 97 (57.4) 0 (0) 97 (100) 141 (100) 55 (39) 86 (61)

 Zambia (ZM) 72 (42.6 0 (0) 72 (100) NA NA NA
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Ethiopia and Zimbabwe showing the highest levels of 
V3-loop diversity (Fig.  2). All sequences were phyloge-
netically confirmed as HIV-1 subtype C. More than 92% 
of the sequences clustered according to their tropism. 
Only two R5 sequences (3%) and eight X4 sequences 
(13%) did not cluster according to their tropism based 
on the selection of sequences used for the phylogenetic 
analysis (Fig. 4).

Use of Maraviroc in Africa
A scoping review of literature on the active use of Mara-
viroc revealed Tanzania and Zambia as the only countries 
in Africa that include Maraviroc as a component of sal-
vage therapy in their national ART guidelines, following 
an HIV tropism test. Although the Southern African HIV 

Clinicians Society recommends the use of Maraviroc in 
salvage therapy, this has not been incorporated in the 
treatment guidelines by the Health Ministries of South-
ern African Countries. In addition, Maraviroc is regis-
tered in South Africa and Uganda. Table 6 shows details 
for countries on the registration and or recommendation 
on the use of Maraviroc.

Discussion
Maraviroc is a CCR5 antagonist, that prevents HIV from 
utilizing the CCR5 co-receptor to enter target cells. Dur-
ing the acute phase of infection, HIV strains irrespec-
tive of genotype, utilize CCR5 as the main co-receptor. 
However, as disease progresses, CXCR4 utilizing viruses 
emerge in about 50% of infected individual [41–43]. By 

Table 4 HIV-1 subtype C V3 loop N-glycosylation site and V3 loop crown motif variation in African countries

Country % of sequences that lost N‑glycosylation site

Early Chronic

R5 X4 R5 X4

Zambia (ZM) 4.5 17.2 5 30

South Africa (ZA) 0.1 18.4 0.7 6.2

Tanzania (TZ) 0 0 0 0

Malawi (MW) 1.1 0 1.3 22.7

Ethiopia (ET) 6 67 1.7 46.9

Botswana (BW) 4 0 2 3

Variation at the GPGQ Crown motif (%)

 Zambia (ZM) 0 → RPGQ (1.8)
→ GPRQ (1.8)

→ GPGR (0.2)
→ RPRQ (0.4)
→ RPGQ (0.5) → GPEQ (0.07)

→ GPGR (1.25)
→ RPGQ (6.3)

 South Africa (ZA)  → GPGK (0.1)
 → GPGR (0.1)

0 → GPGR (0.09)
→ GPGT (0.9)
→ GPGI (0.19)

→ GPGY (27.4)
→ GPGA (10.6)
→ GRGQ (7.1)
→ GPGT (4.4)
→ GRGQ (5.3)
→ GPGH (1.8)
→ GPRQ (1.8)
→ GPGL (0.9)
→ GQRQ (0.9)

 Tanzania (TZ) 0 0 → GPGH (0.3)
→ GLGQ (1.1)
→ GSGQ (0.6)

0

 Malawi (MW) 0 → GPGK (9.2)
→ GPGR (1.2)

→ GPGR (0.6)
→ GPGK (0.5)
→ GPGH (0.08)
→ EPGQ (0.04)
→ GRGH (0.04)
→ RPGQ (0.04)

→ GPGK (7.6)
→ RPGQ (0.8)
→ GSGQ (0.8)

 Ethiopia (ET) 0 0 → GPRT (1.7)
→ RPRQ (1.7)

→ GPGH (43.8)
→ GRGQ (18.8)

 Botswana (BW) → GPGK (0.15) → GPGK (35.8)
→ GPGR (40.3)

→ GPGR (0.6)
→ RPGQ (0.3)
→ GQGQ (0.06)
→ GPGP (0.06)
→ GGGK (0.8)

→ GPGR (77)
→ GPGK (22.6)
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and large, in Africa Maraviroc is prescribed mostly for 
patients who have failed first and second line regimens, 
which are comprised of nucleoside reverse transcriptase 
inhibitors, non-nucleoside reverse transcriptase inhibi-
tors, and protease inhibitors [44, 45]. Since, HIV-1-C 
drives the epidemic in Southern Africa and accounts 
for about 46% of infections worldwide [24], the current 
investigation was aimed at determining the distribution 
of R5 and X4 viruses in early versus chronic infections 
in HIV-1-C acquired through MTCT and heterosexual 
routes in Africa.

Using predicted biotypes of about 14,641 gp120 
V3-loop sequences, filtered from the Los Alamos HIV 
database, our analyses showed that X4 variants are pre-
sent in significantly similar proportions in early and early 
chronic (< 1  year post-infection) HIV-1-C infected indi-
viduals. However, in late chronic infections (5 years post 
infection), X4 variants increase 3–5 folds. A study by 
[46], studying paired RNA and proviral DNA from HIV-
1-B antiretroviral naive patients with acute and chronic 
infections, showed that more than 90% of viruses in acute 
infections from plasma and peripheral blood mononu-
clear cells were R5, while patients with chronic infec-
tions had a significantly higher prevalence of X4 viruses 
than in patients with acute infection. Another study [47], 
evaluating 200 patients for co-receptor tropism, using an 
ultra-deep sequencing approach, also showed that both 
X4 and R5 viruses co-exists during acute infections, but 
with R5 viruses as the highly predominant variant. This 
shift from R5 to X4 viruses was also observed in the cur-
rent study.

Several hypothesis have been advanced to explain 
the predominance of R5 viruses in early infection and 
X4 viruses in chronic infections: that X4 and R5 viruses 
are transmitted at the same time but X4 viruses are 

suppressed by the prevailing strong immune response 
at the time of infection and proliferate later in infection 
when the immune surveillance is weak [48–50]; that 
X4 viruses emerge from R5 viruses at the beginning of 
infection [51, 52]; and thirdly, X4 and R5 viruses have 
different target cell types, with more target cell types 
for X4 viruses (T-cells) increasing in abundance as 
infection becomes chronic [53, 54]. A closer look at the 
sequences in the current study showed that overall, the 
prevalence of X4 viruses in early infections and early 
chronic (between 6  months and 1  year post-infection) 
are similar. However, there is a dramatic rise in the fre-
quency of X4 viruses when sequences from patients 
with more than 5  years of infection were considered. 
The inference is that within 4  years of infection with 
HIV-1-C, the proportion of X4 viruses becomes signifi-
cantly higher ranging from 24 to 43%. In fact in a recent 
study, we reported a high frequency (43%) of X4 viruses 
identified by ultra-deep sequencing from a cohort of 
HIV-1-C chronically infected individuals from north-
ern South Africa [34]. Overall in the current study, the 
prevalence of X4 viruses was not significantly different 
in early and chronic infections among individuals who 
were vertical infected, and was also similar among indi-
viduals who acquired infection heterosexually. It also 
appears the route of infection does not influence core-
ceptor tropism in early or chronic infections. We did 
not find X4 viruses in early infections from both slow 
and rapid progressors; but there was significantly more 
X4 viruses in chronic rapid progressors than in chronic 
slow progressors.

The findings from the current study should be 
examined in the context of several limitations. Firstly, 
there was a dearth of sequence data from longitudinal 
cohorts in Africa to assess evolution of co-receptor 

d

Fig. 2 continued
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Fig. 3 Amino acid alignment of 126 representative sequences of early and chronic R5 and X4 infections. Highlighted areas (blue) indicate the 
N-glycosylation site and the V3 loop crown motive
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usage over time. Nevertheless, in seeking correlates 
of co-receptor switch between CCR5 and CXCR4 
[55], reported no significant difference in co-receptor 
‘switching’ over time among patients who were initially 
infected exclusively with R5 or X4 viruses, when age, 
viral load, and gender was considered. In the same vein 
[56], showed that viruses are either R5 or X4 but not 
dual tropic, and that dual tropism is due to mixture of 
both phenotypes. Secondly, data meeting the selection 
criteria for known acute infections and routes of trans-
mission on HIV-1-C infections were available for only 
15 African countries, with four countries (Botswana, 
Malawi, South Africa and Zambia) providing a highly 
disproportionate number of sequences. This limits the 
scope of applicability of the findings at least in South-
ern Africa where HIV-1-C predominantly drives the 
epidemic. Thirdly, due to the degree of false predic-
tion of co-receptor usage by bioinformatic tools such 
as Geno2Pheno and position-specific scoring matrices, 
opinion on the clinical usefulness of predicted core-
ceptor usage varies [57–59]; so predictions will need 
to be seen in the context of other clinical parameters. 
Nevertheless, with the observation that X4 viruses 
exist in an appreciable proportion in chronic infections 
and that Maraviroc usage as salvage therapy might lead 
to resistance due to pre-selection of X4 strains [60], 
it is intriguing why Maraviroc should be reserved for 
management at the late stage of infection even in those 
few African countries in which it is recommended for 

salvage therapy. Nevertheless, new changes in treat-
ment regimens are being introduced. In an effort to 
reduce drug resistance to non-nucleoside reverse 
transcriptase inhibitors (NNRTI), many low and mid-
dle income countries, and also high income countries 
are replacing NNRTI with dolutegravir, an integrase 
strand transfer inhibitors (INSTI), in first and second 
line treatment regimens [61, 62]. For example, recently 
in November 2019, South Africa switched from a fixed 
dose combination of standard tenofovir–lamivudine–
nevirapine to a fixed dose combination of tenofovir–
lamivudine–dolutegravir. This move may potentially 
delay, across the board, the use of Maraviroc in patient 
management.

Conclusion
Our data show that the use of Maraviroc is very limited 
in Africa, and confirms that for an improved utility of 
Maraviroc as salvage therapy among HIV-1-C patients 
in Africa, preliminary virus co-receptor determination 
is required. Alternatively, Maraviroc may be included 
as first line therapy in combination with nucleoside 
analogues; although this may not be beneficial if pre-
vention of mother-to-child transmission is a desir-
able outcome, since there is no evidence of Maraviroc’s 
efficacy in the prevention of HIV mother-to-child 
transmission. Finally, research in CXCR4 antagonists 
is encouraged as universal access to treatment gains 
steam across Africa.

Table 5 V3 loop amino acid diversity (amino acid length, deletions, insertions, net charge) of X4 and R5 viruses in early 
and chronic infections

Country Early X4/R5 Chronic X4/R5

AA length Deletion 
position

Insertion 
position

AA net 
positive 
charge

AA length Deletion 
position

Insertion 
position

AA net 
positive 
charge

Zambia (ZM) 34–35/35 24/None None/none 4–8/2–6 35/35 None/none None/none 1–6/1–6

South Africa (ZA) 34–35/36 10, 23/22 None/9–10 4–8/2–6 34–37/34–35 22/22 7–8, 9–10, 
13–14/none

4–10/2–6

Tanzania (TZ) 34–35/34–35 22, 24/22, 24 None/none 3–6/2–6 34–35/34–35 25/22, 23 None/none 4–6/1–6

Malawi (MW) 34–35/34–35 24/24 None/none 3–5/3–5 34–35/34–38 22, 25/24 None/13–14, 
14–15

2–7/2–6

Ethiopia (ET) 35/35 None/none None/none 4–6/2–5 35–37/35 None/none 12–13/none 3–8/0–6

Botswana (BW) 35/35 None/none None/none 3–6/1–6 34–35/34–37 22/22 None/13–14 2–6/1–6
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