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Abstract 

Background: Although injection drug use drives antiretroviral drug resistance, the prevalence of protease inhibi‑
tor (PI) resistance among Kenyan IDUs remains undetermined. We, therefore, explored PI resistance mutations and 
their association with viral load and CD4+ T cell counts in HIV‑1 infected IDUs (ART‑naive, n = 32; and ‑experienced, 
n = 47) and non‑drug users (ART‑naive, n = 21; and ‑experienced, n = 32) naive for PI treatment from coastal Kenya.

Results: Only IDUs harboured major PI resistance mutations consisting of L90M, M46I and D30 N among 3 (6.4 %) 
ART‑experienced and 1 (3.1 %) ‑naive individuals. Minor PI mutations including A71T, G48E, G48R, I13V, K20I, K20R, 
L10I, L10V, L33F, L63P, T74S, V11I, and V32L were detected among the ART‑experienced (36.2 vs. 46.9 %) and ‑naive 
(43.8 vs. 66.7 %) IDUs and non‑drug users, respectively. All the four IDUs possessing major mutations had high viral 
load while three presented with CD4+ T cell counts of <500 cells/ml. Among the ART‑naive non‑drug users, CD4+ T 
cell counts were significantly lower in carriers of minor mutations compared to non‑carriers (P < 0.05).

Conclusion: Transmitted drug resistance may occur in IDUs underscoring the need for genotyping resistance before 
initiating PI treatment.
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Background
Despite up-scaling of antiretroviral drugs for treatment 
and prevention, HIV-1 remains an important cause of 
infectious disease burden in the world. In the year 2013, 
an estimated 35 million people globally were infected 
with HIV of whom 24.7 million reside in Sub-Saharan 
Africa [1]. Substance consumption including injection 
drug use is an emerging epidemic that is driving the high 
HIV burden on the continent [2]. Among the 243 mil-
lion people using substances in the world, 12.7 million 
are injection drug users (IDUs) of whom 13.1 % are living 

with HIV [1]. Africa is home to nearly 1.02 million IDUs 
of which 12.1  % are harbouring HIV infections [1]. In 
Kenya, about 18.3 % of the 49,000 IDUs, mainly concen-
trated in Nairobi and Coastal regions, are living with HIV 
[3]. Non-drug users are individuals not consuming illicit 
drugs classified by the United Nations Office on Drug 
and Crime (UNODC) [1]. However, non-drug users are 
also at increased risk of acquiring HIV infection, largely 
through engaging in unprotected and high risk sexual 
activities with IDUs [4–6]. As such, effective interven-
tions are urgently required to reduce the high burden of 
HIV in these most-at-risk-populations.

The current standard regimen for first-line HIV treat-
ment in Kenya consists of two nucleoside reverse tran-
scriptase inhibitors (NRTI) mainly tenofovir disoproxil 
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fumarate (TDF) or azidovudine (AZT), lamuvudine 
(3TC) and one non-nucleoside reverse transcriptase 
inhibitor (NNRTI) efevirenz (EFV) or nevirapine (NVP) 
[7]. Protease inhibitor (PI) drugs serve as HIV-1 pre- 
and post-exposure prophylaxis and substitute treatment 
in cases of first line antiretroviral treatment failures 
and/or intolerance [8]. Protease inhibitors are recom-
mended in cases of virological failure, defined as a viral 
load >1000 copies/ml after 12 months of therapy or an 
increase in the viral load after initial viral suppression 
[7]. Consequently, PIs have been effective in further 
lowering HIV-associated morbidity and mortality [9, 
10]. However, continued use of PIs as effective salvage 
treatment is hindered by emergence of drug resist-
ance, largely due to poor accessibility and adherence 
to treatment [11]. Two classes of point mutations in 
the protease gene, designated major and minor muta-
tions, mediate resistance to PIs [12]. Major mutations 
decrease susceptibility to PI drugs leading to poor viro-
logic response and treatment failure, while minor muta-
tions only enhance viral replication in the presence of 
major mutations [12]. In addition, previous studies 
reporting higher rates of major and minor PI resistance 
(24 vs. 8  %) among ART-experienced PI-naive IDUs 
compared to non-drug users [10], suggest spontaneous 
emergence of PI resistance in PI-naive individuals. To 
our knowledge, no study has concurrently determined 
rates of PI resistance in ART-naive and -experienced 
IDUs and non-drug users among PI treatment-naive 
individuals.

Several studies across Kenya show widespread resist-
ance to NRTIs and non-NNRTIs in ART-naive and -expe-
rienced adults and children, breastfeeding infants and 
IDUs [13–31]. More importantly, previous studies show-
ing 13.8 % resistance rates to first line (NRTIs and NNR-
TIs) ART regimens among IDUs from Mombasa, coastal 
Kenya, suggest existence of resistance to these drugs that 
are commonly used in combination with PIs [27]. In such 
cases of suspected drug resistance, the NNRTIs (NVP 
or EFV) or NRTIs (ABC) are often substituted with PIs 
(either LPV/r or ATV/r) as second-line treatment [7]. In 
addition, resistance to integrase inhibitors has also been 
detected in the country [32]. While a number of studies 
in the country show existence of resistance to PIs in ART-
naive and -experienced individuals in adults and children 
from the general population, and treatment-naive female 
sex workers [16, 18, 29, 33, 34] no studies to date have 
established PI resistance in Kenyan IDUs. Since, high 
drug injection intensity particularly under the selection 
pressure of antiretroviral therapy accelerates emergence 
of resistance [35], this cross-sectional study, examined 
PI resistance in ART-naive and -experienced IDUs from 
Mombasa, a coastal city in Kenya.

Methods
Study design and population
This cross-sectional study was conducted in HIV-1 
infected IDUs and non-drug using controls at Bomu 
Hospital, a social enterprise facility in Mombasa City, 
coastal Kenya. Injection drug users were recruited via 
respondent-driven, snowball and makeshift-outreach 
sampling methods. In the context of the current study, 
IDUs comprised of individuals exhibiting injection nee-
dle-stick scars and reporting a history of injecting any 
illicit drug classified by UNODC at least once in the 
previous month [1] while non-drug users were individu-
als reporting having never used any of the substances 
and drugs in the UNODC registry [1]. HIV-1 infection 
status of consenting IDUs and non-drug users was con-
firmed using Determine™ (Abbott Laboratories, Tokyo, 
Japan) and Unigold™ (Trinity Biotech Plc, Bray, Ireland) 
in accordance with the Kenya’s guidelines for adult HIV 
testing [36]. Those yielding positive results on both tests 
were subsequently recruited into the study. In addition, 
ART-naive study participants had not been initiated on 
ART. The ART-experienced study participants were on 
first-line ART (NRTIs and NNRTIs) consisting of TDF 
or AZT + 3TC + NVP or EFV [37]. None of the partici-
pants were on PIs.

Clinical evaluations
In brief, about, 3.0 ml venous blood was collected from 
study participants in ethylenediaminetetraacetic acid 
vacutainer tubes (Becton–Dickinson, Franklin Lakes, 
USA) and used for enumerating CD4+ T cells, and 
plasma harvesting for HIV-1 viral load quantification. 
A drop of whole blood was applied on Whatman-FTA® 
903 cards (Schleicher & Schuell BioScience, Dassel, Ger-
many) for preparing dry blood spots (DBS) that were 
stored at −20 °C until used for pro-viral DNA extraction. 
For enumerating CD4+ T cell counts, 5.0  μl of blood 
were stained with CD3/CD4/CD45 monoclonal antibody 
reagent (BD Tritest) and analysed on BD FACSCalibur™ 
according to the manufacturer’s protocols. HIV-1 viral 
load was determined in 0.2  ml plasma samples using 
the Abbott Molecular m2000sp sample preparation and 
m2000rt real-time amplification and detection systems 
(Abbott Molecular Inc., Illinois, USA) according to the 
manufacturer’s methods.

HIV‑1 DNA extraction and amplification
HIV-1 pro-viral DNA was extracted from DBS using 
QIAamp™ DNA blood mini kit (QIAGEN, Valen-
cia, USA) according to the manufacturer’s recom-
mendations. HIV-1 pro-viral DNA encoding protease 
gene was amplified by nested PCR with primers; 
Nyupol_7 (5′-GGGAATTTTCTTCAGAGCAG-3′) 
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HXB2 nucleotide position 2125–2144, and Nyupol_8 
(5′-TCTTCTGTCAATGGCCATTGT-3′) HXB2 
nucleotide position 2635–2615 in the first round. 
Nyupol_9 (5′-TCCTTAACTTCCCTCAAATCACT-3′) 
HXB2 nucleotide position 2241–2264 and Nyupol_10 
(5′-CTGGCACGGTTTCAATAG GACT-3′) HXB2 
nucleotide position 2577–2556 were used in the sec-
ond round. First and second round PCR was con-
ducted in a 25  µl volume containing 5  µL DNA, 
1× PCR buffer, 1.5 mM MgCl2, 1 U/µL Taq polymerase 
(KemTaq®), 200 µM of each dNTP (Invitrogen™, Carls-
bad, USA), and 0.5  µM of each first or second round 
primers. Amplification consisted of initial denatura-
tion at 94 °C for 4 min, followed by 40 cycles of 94 °C 
for 15 s, 50 °C for 30 s, and 72 °C for 1 min, with a final 
extension of 72 °C for 5 min. PCR products were elec-
trophoresed in 1 % ethidium bromide-stained agarose 
gel, and visualized under ultraviolet light. PCR prod-
uct sizes of approximately 330  bp were diagnostic for 
HIV-1 pro-viral DNA.

HIV‑1 protease inhibitor drug resistance mutations
PCR amplicons were purified with QIAquick™ PCR 
purification kit (Qiagen, Valencia, USA) according to 
the manufacturer’s protocol. Direct sequencing was per-
formed using BigDye™ sequencing chemistry (Applied 
Biosystems®, Foster City, USA) on an ABI PRISM® 
3100 Genetic Analyzer (Applied Biosystems®, Foster 
City, USA) as per the manufacturer’s protocols. Primer 
pair Nyupol_9 and Nyupol_10 was used for forward 
and reverse sequencing reactions, respectively. Forward 
and reverse chromatograms were visually inspected and 
edited for base mis-calls using MEGA version 6.0 [38]. 
Pair-wise alignment and contiguous sequences were 
generated using DNA Baser Sequence Assembler ver-
sion 4.20.0 (Heracle BioSoft, http://www.DnaBaser.com). 
Protease inhibitor drug resistance mutations were iden-
tified and interpreted using Stanford web-based HIV 
drug resistance database [39, 40] and the International 
AIDS Society-USA (IAS-USA) drug resistance panel 
[12].

Data analysis
Data analysis was conducted using IBM®  SPSS 20.0 
(IBM® SPSS Statistics for Windows, Version 20.0. 
Armonk, NY: IBM Corp.). Age and CD4+ T cell counts 
and viral load were compared across study groups using 
Kruskal–Wallis test and Dunn’s post hoc correction for 
multiple comparisons. Differences in distribution of gen-
der were compared across the study groups using Chi-
square test. Rates of resistance mutations in each study 
group were summarised as numbers and proportions. 
Statistical significance was set at P < 0.05.

Ethical considerations
This study was conducted following ethical approval 
obtained from Kenyatta University Ethical Review Com-
mittee, approval number PKU019/116 of 2012 in accord-
ance with Helsinki declaration [41]. Written informed 
consent was obtained from all participants prior to enrol-
ment into the study. Confidentiality was maintained 
throughout the study.

Results
Baseline characteristics of the study participants
Baseline characteristics of the study participants are pre-
sented in Table 1. Recruitment was within HIV-infected 
cohort thus sero-conversion rate is unknown. A total of 
132 HIV-1 sero-positive study participants were success-
fully sequenced for protease inhibitor drug resistance. 
The study participants consisted of IDUs (ART-naive, 
n =  32 and -experienced, n =  47) and non-drug users 
(ART-naive, n  =  21 and -experienced, n  =  32). Gen-
der distribution was similar among the study groups 
(P  =  0.531). Age was significantly different across the 
groups (P = 0.009) with ART-naive IDUs (median, 30.1; 
IQR, 7.2) having younger individuals relative to ART-
naive non-drug users (median, 36.0; IQR, 13.8; P < 0.05). 
In addition, 20 (42.5 %), 24 (51.1 %) and 3 (6.4 %) ART-
experienced IDUs while 3 (9.3  %), 7 (21.9  %) and 22 
(68.8  %) ART-experienced non-drug users were on 
antiretroviral therapy for <1, 1–3, and >3  years, respec-
tively. The CD4+ T cell counts were similar across the 
study groups (P = 0.379). The HIV-1 viral load was signif-
icantly different across the study groups (P = 0.004) with 
ART-naive (median, 3.4; IQR, 2.7; P < 0.05) and -experi-
enced (median, 3.5; IQR, 2.7; P < 0.01) IDUs presenting 
with lower levels compared to ART-naive non-drug users 
(median, 4.5; IQR, 2.8).

Protease inhibitor drug resistance
Major and minor HIV-1 protease drug resistance muta-
tions detected in the study participants are shown in 
Table  2. Although major PI resistance mutations was 
not detected in the non-drug users, three major PI 
resistance mutations including L90M, M46I and D30N 
were detected in 4 (5.1 %) IDUs. Interestingly, mutation 
L90M co-existed with K20R minor mutation in 1 (2.1 %) 
ART-experienced IDU, while D30N co-existed with 
T74S+K20R minor mutations in 1 (3.1  %) ART-naive 
IDU. In addition, D30N+M46I co-existed with G48E and 
K20I minor mutations, respectively, in 2 (4.2  %) ART-
experienced IDUs. Fourteen (29.8  %) ART-experienced 
IDUs harboured only minor mutations comprising of 
1(2.1  %) K20I, 7 (8.5  %) K20R, 3 (6.4  %) L10I, 1 (2.1  %) 
V32L and 2 (12.5 %) L10V+K20R. In addition, 13 (40.6 %) 
ART-naive IDUs had only minor mutations including 1 
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(3.1 %) G48E, 1 (3.1 %) G48R, 5 (15.6 %) K20R, 2 (6.3 %) 
L10I, 1 (3.1 %) L10V, 1 (3.1 %) L101+K20R and 2 (6.3 %) 
L10V + K20R.

In non-drug users, 15 (46.9  %) ART-experienced 
individuals had minor mutations consisting of 5 

(15.6  %) K20R, 2 (6.3  %) L10V, 2 (6.3  %) L33F, 1 
(3.1 %) I13V + L63P, 1 (3.1 %) L10V + K20R, 3 (9.4 %) 
L10V +  T74S and 1 (3.1  %) L33F +  A71T. In addition, 
14 (66.7 %) ART-naive non-drug users harboured minor 
mutations comprising of 1 (7.1 %) K20I, 8 (38.1 %) K20R, 

Table 1 Baseline characteristics of the study participants

Data are presented as medians (IQR, interquartile range) or indicated as number (n) and proportion (%) of subjects

ART (−) anti-retroviral treatment-naive, ART (+) antiretroviral treatment-experienced, HIV-1 human immunodeficiency virus-1
a P < 0.05 vs. ART (−) non-drug users
b P < 0.01 vs. ART (−) non-drug users

Significant P values are shown in italic

Characteristic Non‑drug users Injection drug users P

ART (−), n = 21 ART (+), n = 32 ART (−), n = 32 ART (+), n = 47

Female, n (%) 16 (76.2) 20 (62.5) 18 (56.3) 30 (63.8) 0.531

Age, years 36.0 (13.8) 35.2 (10.6) 30.1 (7.2)a 31.6 (7.4) 0.009

Duration (years) on ART, n (%)

 <1 0 (0.0) 3 (9.3) 0 (0.0) 20 (42.5)

 1–3 0 (0.0) 7 (21.9) 0 (0.0) 24 (51.1) –

 >3 0 (0.0) 22 (68.8) 0 (0.0) 3 (6.4)

CD4+ T cell counts/ml 568 (673) 412 (554) 532 (472) 426 (423) 0.379

Log10 HIV‑1 RNA, copies/ml 4.5 (2.8) 4.3 (1.6) 3.4 (2.7)a 3.5 (2.7)b 0.004

Table 2 Protease inhibitor drug resistance mutations

Data presented are number and proportion of subjects. Mutations are denoted based on Stanford drug resistance database and International Antiviral Society-USA 
drug resistance mutations panel [12, 39, 40], where number shows amino acid position in the protease gene, and letter before position is wild type amino acid and 
after the position mutant amino acid

Major mutations are shown in bold

A alanine, D aspartic acid, E glutamic acid, F phenylalanine, G glycine, I isoleucine, K lysine, L leucine, M methionine, N asparagine, P proline, R arginine, S serine, T 
threonine, V valine, ART (−) antiretroviral treatment-naive, ART (+) antiretroviral treatment-experienced, HIV-1 human immunodeficiency virus type-1

Mutation Non‑drug users Injection drug users

ART (−), n = 21 ART (+), n = 32 ART (−), n = 32 ART (+), n = 47

L90M + K20R 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1)

D30N + T74S + K20R 0 (0.0) 0 (0.0) 1 (3.1) 0 (0.0)

D30N + M46I + G48E 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1)

D30N + M46I + K20I 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1)

G48E 0 (0.0) 0 (0.0) 1 (3.1) 0 (0.0)

G48R 0 (0.0) 0 (0.0) 1 (3.1) 0 (0.0)

K20I 1 (7.1) 0 (0.0) 0 (0.0) 1 (2.1)

K20R 8 (38.1) 5 (15.6) 5 (15.6) 7 (8.5)

L10I 2 (9.5) 0 (0.0) 2 (6.3) 3 (6.4)

L10V 0 (0.0) 2 (6.3) 1 (3.1) 0 (0.0)

L33F 0 (0.0) 2 (6.3) 0 (0.0) 0 (0.0)

V32L 0 (0.0) 0 (0.0) 0 (0.0) 1 (2.1)

I13V + L63P 0 (0.0) 1 (3.1) 0 (0.0) 0 (0.0)

L10I + K20R 1 (7.1) 0 (0.0) 1 (3.1) 0 (0.0)

L10V + K20R 0 (0.0) 1 (3.1) 2 (6.3) 2 (4.3)

L10V + T74S 0 (0.0) 3 (9.4) 0 (0.0) 0 (0.0)

L10V + V11I 2 (9.5) 0 (0.0) 0 (0.0) 0 (0.0)

L33F + A71T 0 (0.0) 1 (3.1) 0 (0.0) 0 (0.0)
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2 (9.5  %) L10I, 1 (7.1  %) L101  +  K20R, and 2 (9.5  %) 
L10V + V11I.

Association of protease inhibitor resistance with viral load 
and CD4+ T cell counts
Viral load and CD4+ T cell counts of individuals with 
major and minor mutations are presented in Tables  3 
and 4, respectively. All the four individuals harbouring 
major mutations presented with high viral load of 4624, 
291,124, 141,341 and 209,871  copies/ml, which was 
greater than 1000 copies/ml viral load threshold required 
for viral suppression in the community [42]. In addition, 
three of the individuals with major mutations presented 
with CD4+ T cell counts of 473, 39, and 162  cells/μl 
which were <500  cells/μl. Carriage of minor mutations 
was not associated with viral load in all the study groups 
(P > 0.05), but among ART-naive non-drug users, CD4+ 
T cell counts were significantly lower in carriers of minor 
mutations compared to non-carriers (median, 455; IQR , 
599 vs. 989, 507; P = 0.005).

Discussion
Effective use of protease inhibitors in HIV-1 treatment 
and prevention is largely impeded by the increasing 
development and spread of acquired and transmitted 
resistance [43]. Antiretroviral treatment-naive and -expe-
rienced IDUs are at an increased risk of acquiring antiret-
roviral drug resistance as a consequence of high risk 
sexual and injection practices [44]. In addition, increased 
selection of protease drug resistance in ART-experienced 
IDUs is linked to high drug injection intensity and poor 
adherence to treatment [35, 44]. Thus, continuous sur-
veillance of drug resistance is important in planning for 
effective and successful treatment programs in IDUs. 
This study, determined PI resistance in ART-naive and 
-experienced IDUs in Mombasa City, in the coastal 
region in Kenya.

In the current study, major PI mutations were detected 
only in IDUs with the antiretroviral treatment-experi-
enced (L90M, D30N and M46I) individuals having higher 
rates than -naive (D30N) individuals. Most importantly, 

Table 3 HIV-1 viral load and CD4+ T cell counts of individuals with major protease inhibitor drug resistance mutations

Mutations are denoted according to Stanford drug resistance database and International Antiviral Society-USA drug resistance mutations panel [12, 39, 40]

Major mutations are shown in bold

D aspartic acid, E glutamic acid, G glycine, I isoleucine, K lysine, L leucine, M methionine, N asparagine, S serine; T threonine, ART antiretroviral therapy, HIV-1 human 
immunodeficiency virus type-1

ID Mutation Age, years Gender ART duration,  
years

HIV‑1 RNA (log10 HIV‑1 RNA),  
copies/ml

CD4+ T cells/ml

#1 D30N + M46I + G48E 36.4 M <0.5 4624 (3.7) 473

#2 L90M + K20R 34.6 M 1–3 291,124 (5.5) 637

#3 D30N + M46I + K20I 30.1 F 1–3 141,341 (5.2) 39

#4 D30N + T74S + K20R 33.3 M Naive 209,871 (5.3) 162

Table 4 Association between minor protease inhibitor resistance mutations, viral load and CD4+ T cell count

Data presented are medians (IQR, interquartile range) in carriers and non-carriers of only minor protease resistance mutations. Statistical analysis was performed using 
Mann–Whitney test

Significant P-values are shown in italic

ART (−) anti-retroviral treatment-naive, ART (+) anti-retroviral treatment-experienced, Mutation (+) minor protease resistance mutation carrier, Mutation (−) minor 
protease resistance mutation non-carrier, HIV-1 human immunodeficiency virus type

Injection drug users

ART (−) ART (+)

Mutation (−), n = 18 Mutation (+), n = 13 P Mutation (−), n = 30 Mutation (+), n = 14 P

CD4+ T cell count/μl 529 (276) 568 (597) 0.708 412 (415) 424 (648) 0.762

Log10 HIV‑1 RNA, copies/ml 4.4 (2.7) 2.2 (1.9) 0.183 3.6 (2.7) 2.2 (1.7) 0.142

Non‑drug users

ART (−) ART (+)

Mutation (–), n = 7 Mutation (+), n = 14 P Mutation (−), n = 17 Mutation (+), n = 15 P

CD4+ T cell count/μl 989 (507) 455 (599) 0.005 351 (526) 554 (461) 0.350

Log10 HIV‑1 RNA, copies/ml 3.6 (1.9) 4.8 (2.5) 0.313 4.3 (1.3) 4.3 (2.0) 0.852
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major mutations, D30N and M46I co-existed with minor 
mutations, G48E, K20I and T74S, suggesting that these 
mutations mediate evolution of major drug resistance 
[45]. Our findings of L90M, D30N, and M46I mutations, 
are partly consistent with previous studies reporting on 
the presence of major PI mutations D30N and M46I in 
ART-naive sex workers, a most-at-risk-population from 
Nairobi, Kenya [34]. Our results are also, in part, con-
sistent with previous studies in Canada showing D30N, 
M46I, and L90M PI resistance mutations among individ-
uals reporting a history of injection drug use [46]. Like-
wise, our results are similar to previous studies showing 
presence of L90M, D30N, and M46I mutations among 
antiretroviral-naive IDUs in Rio de Janeiro, Brazil [47]. 
Importantly, phenotypic and/or clinical evidence indicate 
that D30N mutation confers high-level resistance to nelf-
inavir; L90M imparts resistance to nelfinavir, sequinavir, 
indinavir, and lopinavir; while M46I confers resistance 
to indinavir, lopinavir, fosamprenavir and nelfinavir [12, 
39, 40]. In this study, most of the ART-experienced IDUs 
and non-drug users had been receiving first-line anti-
retroviral treatment (NRTIs and NNRTIs) for at least a 
year, eliminating the possibility of cross-resistance to 
PIs [12]. Although not determined in the current study, 
it is possible that development of major PI resistance in 
ART-experienced IDUs is attributable to PI transmit-
ted drug resistance, increased drug-injection frequency, 
particularly under the selection pressure of antiretro-
viral therapy [35]. Therefore, tipranavir/ritonavir and 
darunavir/ritonavir to which the above mutations have 
no effect [12] may be adopted as drugs of choice for sec-
ond line treatment in Kenyan IDUs. Altogether, screen-
ing prior to initiating highly active antiretroviral therapy 
(HAART), monitoring of treatment and routine surveil-
lance are important in achieving effective clinical care 
and preventing emergence and spread of resistance in 
this most-at-risk-population.

Overall, higher rates of minor mutations were found 
in IDUs relative to non-drug users, suggesting heteroge-
neity of HIV-1 strains in IDUs. The detection of A71T, 
G48E/R, I13V, K20I/R, L10I/V, L33F, L63P, T74S, V11I, 
and V32L minor mutations in this study is, in part, con-
sistent with previous studies that reported K20R, L10I/V, 
L33F/I, and L63P minor mutations among HIV-positive 
women attending antenatal clinics in a large HIV treat-
ment study in western Kenya [33]. In addition, our results 
corroborate previous studies showing K20I/M/R, L10I/V, 
I13V, and L63P minor mutations among HIV infected 
treatment-naive individuals in Morocco [48]. Of note 
are the higher rates of minor PI mutations in antiretro-
viral treatment-naive individuals in both the IDUs and 
non-drug users supporting a mechanism(s) of sponta-
neous emergence [49]. However, it is also possible that 

drug-related selective pressure enhances development of 
minor resistance in IDUs [35].

The high viral load among individuals carrying major 
PI mutations is consistent with phenotypic and clini-
cal studies showing absence or low virologic response in 
patients having these major mutations [50]. It is impor-
tant to emphasize that three of the individuals with 
major mutations concurrently harboured G48E, K20I, 
K20R and T74S minor mutations. This is not surprising 
because G48E inhibits as K20I, K20R and T74S enhance 
viral replication [12, 51]. In addition, CD4+ T cell counts 
were <500  cells/μl in three of the patients, indicating 
progression to immunodeficiency. Although minor PI 
mutations do not directly cause reduced phenotypic 
and/or clinical response to PI resistance [12], the lower 
CD4+ T cell counts observed in ART-naive users pos-
sibly suggests that minor mutations may contribute to 
viral fitness and infectivity in treatment-naive individuals 
[52]. This hypothesis is underscored by previous studies 
reporting that polymorphic compensatory mutations in 
the protease gene, may improve the replicative capacity 
of HIV-1 even in the absence of drug selective pressure 
or major resistance mutations [52]. Interestingly, previ-
ous studies have also reported low CD4+ T cell counts 
in anti-retroviral treatment naive IDUs harbouring minor 
PI mutations [53]. Therefore, our findings suggest that 
appearance of minor PI mutations may indicate disease 
progression among newly-infected individuals.

While a prospective design would have been impor-
tant in examining the emergence of PI resistance in treat-
ment-naive and -experienced IDUs, this cross-sectional 
study provides the first baseline evidence of occurrence 
of PI resistance in IDUs from Kenya. Although specific 
antiretroviral regimens used by the ART-experienced 
individuals were not evaluated in this study, poor adher-
ence to ART by injection drug users, generate sub-
optimal antiretroviral drug levels that exert selective 
pressure on the viral genome leading to resistance [44]. 
Since interactions of substances consumed and antiret-
roviral drugs in IDUs cause hepatic hyper-inflammation 
and derangements in metabolic functions [54, 55], toxi-
cological analysis and monitoring of response to ART 
in a prospective approach will provide insights into the 
mechanisms underlying development of resistance. In 
addition, analysis of mutations outside the protease gene, 
such as env [56] that confer resistance to PI will identify 
additional mutants mediating resistance.

Conclusion
Protease inhibitor transmitted drug resistance is likely to 
occur among Kenyan IDUs. Therefore, performing HIV-1 
drug resistance analyses prior to initiating PI treatment in 
HIV patients from high-risk population groups is critical 
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in achieving better treatment outcomes and prolonging 
the effectiveness of these drugs in the country.

Sequence data
The 125 sequences described in this study were submit-
ted to the GenBank under accession numbers: KP791995, 
KP791996, KP791997, KP791998, KP791999, KP792000, 
KP792001, KP792002, KP792003, KP792004, KP792005, 
KP792006, KP792007, KP792008, KP792009, KP792010, 
KP792011, KP792012, KP792013, KP792014, KP792015, 
KP792016, KP792017, KP792018, KP792019, KP792020, 
KP792021, KP792022, KP792023, KP792024, KP792025, 
KP792026, KP792027, KP792028, KP792029, KP792030, 
KP792031, KP792032, KP792033, KP792034, KP792035, 
KP792036, KP792037, KP792038, KP792039, KP792040, 
KP792041, KP792042, KP792043, KP792044, KP792045, 
KP792046, KP792047, KP792048, KP792049, KP792050, 
KP792051, KP792052, KP792053, KP792054, KP792055, 
KP792056, KP792057, KP792058, KP792059, KP792060, 
KP792061, KP792062, KP792063, KP792064, KP792065, 
KP792066, KP792067, KP792068, KP792069, KP792070, 
KP792071, KP792072, KP792073, KP792074, KP792075, 
KP792076, KP792077, KP792078, KP792079, KP792080, 
KP792081, KP792082, KP792083, KP792084, KP792085, 
KP792086, KP792087, KP792088, KP792089, KP792090, 
KP792091, KP792092, KP792093, KP792094, KP792095, 
KP792096, KP792097, KP792098, KP792099, KP792100, 
KP792101, KP792102, KP792103, KP792104, KP792105, 
KP792106, KP792107, KP792108, KP792109, KP792110, 
KP792111, KP792112, KP792113, KP792114, KP792115, 
KP792116, KP792117, KP792118, KP792119, KT033003, 
KT033004, KT033005, KT033006, KT033007, KT033008, 
and KT033009.
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