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Dual role of autophagy in HIV-1 replication
and pathogenesis
M Scott Killian
Abstract

Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for
eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important
roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select
components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production.
At the same time, HIV-1 proteins appear to disrupt autophagy in uninfected cells, thereby contributing to CD4+ cell
death and HIV-1 pathogenesis. These observations allow for new approaches for the treatment and possibly the
prevention of HIV-1 infection. This review focuses on the relationship between autophagy and HIV-1 infection.
Discussed is how autophagy plays dual roles in HIV-1 replication and HIV-1 disease progression.
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Introduction
Human immunodeficiency virus 1 (HIV-1) establishes a
chronic infection that is characterized by persistent virus
replication, a systemic decline in CD4+ T cell numbers,
accumulating immunologic defects, and the eventual rise
of AIDS-defining opportunistic infections and cancers
[1]. It is increasingly evident 1 that autophagy, a proteo-
lytic mechanism, plays roles in both HIV-1 replication
and disease progression. This review discusses substan-
tial findings from basic research and translational studies
of autophagy and HIV-1. Emphasized is the relevance of
(macro)autophagy to HIV-1 replication, anti-HIV-1
immune responses, and HIV-1 pathogenesis.
Overview of autophagy
Autophagy, first described many decades ago, has
been popularized by recent advances in its cellular
and molecular characterization [2]. Although other
systems (e.g. microautophagy and chaperone-mediated
autophagy) also transport cytoplasmic material to
lysosomes, macroautophagy, hereafter referred to as
autophagy, is the dominant mechanism for degrading
long-lived proteins and organelles [3].
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Autophagy can be conceptualized as a three-stage
process (Figure 1). Stage 1, the initiation of autophagy, is
triggered by events that include nutrient starvation,
cytokine signaling, and genomic stress. Many of these
signals intersect with the mammalian target of ra-
pamycin (mTOR) and act to reverse its inhibitory effects
on autophagy [4]. Stage 2, autophagosome synthesis,
involves the functions of more than 20 autophagy-
related (ATG) genes (Table 1), two ubiquitin-like
systems (Atg12-Atg5 and LC3-PE), and one lipid kinase
signaling complex (PI3K/Beclin-1) [5]. Its end result is
the formation of a double-membrane vesicle that
contains cytosolic content. Stage 3, the proteolytic stage
of autophagy, entails the fusion of mature autophago-
somes with lysosomes [6]. Its coordination has recently
been attributed to the function of the transcription fac-
tor EB (TFEB) [7]. The cytosolic contents are degraded
by lysosomal acid hydrolases and then returned to the
cytoplasm via channels in the autophagolysosomal mem-
brane. Reactivation of mTOR terminates autophagy [8].
Measuring autophagy
Several methods are commonly used to measure auto-
phagy (Table 2) [27]. One approach is to measure, by
Western blot procedures, the intracellular levels of two
variants of the MAP kinase light chain 3 (LC3) protein:
LC3-I and LC3-II. LC3-I is lipidated to form LC3-II and
is is an Open Access article distributed under the terms of the Creative
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Figure 1 The 3 stages of autophagy. Illustrated are distinct stages in the process of autophagy. i) Autophagy is initiated by pathways that
inactivate mTOR. ii) Autophagosome synthesis involves the coupling of LC3-II to the autophagosome membrane and the formation of double
membrane vesicles that sequester cytoplasmic material. iii) The final stage of autophagy, proteolysis, entails the fusion of mature
autophagosomes with lysosomes and the release of breakdown products into the cytoplasm.
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then associates with the autophagosomal membrane
upon the induction of autophagy. Thus, measurement of
the ratio of LC3-II to LC3-I by Western blot methods is
widely used to enumerate autophagic flux; the LC3-II/
LC3-I ratio increases upon the induction of autophagy
and autophagosome formation. Notably, there are three
mammalian isoforms of LC3: LC3A, LC3B, and LC3C.
LC3B-II is the only protein known to specifically localize
to the autophagosome [28]. Another tactic is to visualize
and enumerate autophagosomes by electron microscopy
(Figure 2). The extraordinary magnification of intracellu-
lar constituents enabled by electron microscopy allows
for the direct visualization of the double membrane
autophagosome structures [29]. The use of LC3-GFP
fusion proteins has been helpful for measuring autop-
hagy, allowing for streamlined fluorescent microscopy
procedures [30]. Finally, kinetic RT-PCR is regularly
used to measure the relative levels of autophagy-related
gene transcripts such as BECN1, the gene that encodes
Beclin 1 (see Table 1).
Chemical compounds can also be useful for investigat-

ing the different stages of autophagy (see Figure 1).
Rapamycin inhibits mTOR to induce autophagy [32].
3-methyladenine (3-MA) inhibits class III phosphatidyli-
nositol 3-kinase (PI3K) and thereby blocks autophago-
some formation [33]. Bafilomycin A1 is a specific inhibitor
of vacuolar H+ATPase that blocks the fusion between
autophagosomes and lysosomes [34]. Thus, 3-MA and
Bafilomycin A1 can be used to study the effects of inhibit-
ing the early and late stages of autophagy respectively.
Studies of autophagy must be carefully evaluated with

respect to the details of the assays employed and the in-
terpretation of their results [27,28]. For example, punc-
tate dots in fluorescent microscope images do not
necessarily represent autophagosomes, as LC3 can form
autophagy-independent aggregates within the cell [35].
In addition, the chemical compounds used to modify
autophagic conditions, such as rapamycin, can be toxic
to cells at relatively low concentrations [36]. Noteworthy
is that prolonged 3-MA treatment in nutrient-rich
medium is reported to promote autophagy flux in some
cell lines [37]. Therefore, approaches to inhibit autop-
hagy can actually have the opposite effect under certain
conditions.

Autophagy and HIV-1 replication
As an obligate intracellular parasite, HIV-1 is dependent
on its ability to evade intrinsic cellular defenses includ-
ing xenophagy - the engulfment and destruction of
intracellular microbes by autophagy (Figure 3) [38]. Dis-
cussed below are studies demonstrating that HIV-1 is
able increase virus production by inducing autophagy
and evading its proteolytic components.

Genetic studies
At least 35 genes (see Table 1) are involved in autophagy
[3,38]. Several of these autophagy-associated genes have
been linked with HIV-1 replication. Using small interfer-
ing RNA (siRNA) to knock down host genes in a HeLa-
derived (epithelial) cell line, members of protein-
conjugation pathways involved in autophagy (ATG7,
ATG8, ATG12, and ATG16L2) and lysosomal-associated
genes (CLN3, LapTM5) were found to be essential for
HIV-1 replication [42]. Similarly, a recent study found
that the knockdown of PIK3R4, ATG4A, ATG5, or
ATG16 with short hairpin RNA (shRNA) led to the inhib-
ition of HIV-1LAI replication in SupT1 cells (T cell line)
without having gross effects on the cell viability [43].
However, in separate studies, treatment of HIV-infected
HeLa and H9 cells (a T cell line) with rapamycin to induce
autophagy did not increase HIV-1 replication [39]. Thus,
additional studies are needed to better determine the



Table 1 Major human autophagy-related genes and their functions

Stage of
autophagy

Gene Alternate name Chromosome Function in autophagy References

Initiation of autophagy

mTOR 1p36.2 Negative regulator of autophagy. [4]

RPTOR 17q25.3 Acts to regulate mTOR. [9]

ULK1 ATG1 12q24.3 Components of ULK1 protein kinase
complex.

[10]

ATG13 11p11.2 [11]

RB1CC1 FIP200 8q11.23 [12]

C12orf44 ATG101 2q13.13 [11]

Autophagosome formation

ATG9A,B 2q35, 7q36 Components of ATG9-WIPI complex
and Vps34-beclin1 class III PI3-kinase
complex.

[3,13]

WIPI ATG18 17q24.2 [14]

PIK3C3 VPS34 18q12.3 [3]

PIK3R4 VPS15 3q22.1

BECN1 ATG6 17q21 [15]

ATG14 14q22.3 [15]

UVRAG VPS38 11q13.5 [3,16]

Rubicon KIAA0226 3q29

AMBRA1 11p11

ATG2A, B 11q13, 14q32 [17,18]

ATG12 5q22 Autophagosome formation; Atg12
conjugation. Atg7 and Atg10 are E1-
and E2-like enzymes respectively.

[19]

ATG5 6q21 [18]

ATG16L ATG16 2q37.1 [20]

ATG7 3p25.3 [21]

ATG10 5q14.1 [19]

MAP1LC3B ATG8 16q24.2 Autophagosome maturation; LC3/Atg8
conjugation.

[3]

GABARAP ATG8 17p13.1 [22]

GABARAPL2 GATE16 16q22.1

ATG7 3p25.3 [21]

ATG3 3q13.2 [23]

ATG4 Xq22.3 [24]

Autophagosome-lysosome fusion and degradation

TFEB 6p21 Transcription factor that regulates Atg
and lysosomal genes.

[7]

RAB7 3q21 Mediates fusion between
autophagosome and lysosome.

[25,26]
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relationships between the select autophagy genes and HIV
replication.

Studies of T cells
CD4+ T cells are the major targets of HIV-1 infection
[1]. Zhou and Spector were the first to report that HIV-1
can down regulate autophagy in productively infected
CD4+ T cells [44]. They found that Beclin 1 levels were
substantially decreased in primary CD4+ T cells that
were infected with HIV-1MN, an X4 strain (i.e., using the
CXCR4 co-receptor), in comparison to uninfected cells
and to those treated with aldrithiol-2 (AT-2) inactivated
HIV-1 [44]. In addition, LC3-II levels were reduced in
the HIV-infected cells as measured by confocal micros-
copy and Western blot procedures [44]. The inhibition of
autophagy in the HIV-infected cells was found to be
reversible by nutrient starvation and rapamycin [44].
This finding suggests that the inhibitory effect of HIV-
1 infection on autophagy in CD4+ T cells occurs
upstream of mTOR and primarily acts to block the
initiation stage of autophagy (see Figure 1). Others
have observed that HIV-1 infection inhibits autophagy



Table 2 General methods for measuring autophagy*

Targeted component of autophagy Procedure **

Direct enumeration and quantitation of autophagosomes.
Visible as double-membrane vesicles.

Electron microscopy***

LC3-II to LC3-I ratio. Provides a measurement of
autophagic flux with the LC3B-II/LC3B-I ratio
concomitantly increasing with autophagosome numbers.

WB****

LC3 localization. Punctate spots visible by microscopy.
Total intracellular levels may increase along with
autophagosome numbers.

ICC, FC, transfection of LC3
reporter plasmid followed by
fluorescent microscopy or FC

Quantitation of autophagy-associated gene expression
levels, e.g., BECN1.

qPCR

Quantitation of autophagy-associated protein
levels, e.g., Beclin-1.

WB, ELISA

Silencing of autophagy-associated genes. RNAi

Manipulation of autophagic flux. Use of rapamycin, bafilomycin A1,
and 3-MA

* Because the process is highly conserved among eukaryotes, these methods are broadly applicable to studies of autophagy in humans and animal models
[27,31].
** Western blot (WB), flow cytometry (FC), immunocytochemistry (ICC), quantitative PCR (qPCR), RNA interference (RNAi).
*** “Gold standard” method for quantifying the number of autophagosomes.
**** “Gold standard” method for quantitating autophagic flux. Some commercially available anti-human LC3 antibodies are cross-species reactive, allowing for
studies with non-human primate cells (e.g. Anti-MAP1LC3B2, cat.no. AB2970, Millipore, Billerica, MA).
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in the MOLT-4 CD4+ T cell line [45]. Infection of
MOLT-4 cells with HIV-1NL4-3 (X4) or HIV-1NL4-Ad8,
an R5 variant (i.e., using the CCR5 co-receptor),
caused reductions in the number of autophagosomes
visible by transmission electron microscopy (TEM) and
in the levels of LC3-II as measured in Western blots
[45]. Notably, the LC3-I level was also reduced in the
HIV-infected MOLT-4 cells, possibly reflecting the
presence of a broad effect on transcription.
In contrast to the observations above, HIV-1 and HIV-2

infections have been recently reported to induce autop-
hagy in Jurkat cells (a human T cell leukemia cell line) and
primary CD4+ T cells [46]. HIV-1MN- and HIV-2Rod-
infected Jurkat cells exhibited increased numbers of
autophagosomes in electron micrographs and the
increased expression of various autophagy-associated
genes including ULK1, Atg4D, and BECN1. The inhibition
of autophagy with 3-MA (concentration not stated) or
through the siRNA-mediated knockdown of BECN1
resulted in decreased levels of HIV-1 RNA in the superna-
tants of HIV-1MN-infected Jurkat cell cultures. Because
3-MA can be toxic to cells (e.g., when> [0.5 mM]) and
the knockdown of BECN1 can slow cell growth [43],
potentially reducing HIV replication in an autophagy-
independent manner, it is important to note that the cell
viability and proliferation was not adequately assessed in
these studies. Also reported, primary CD4+ T cells
infected with HIV-1 for 3 days were found to exhibit
increased Beclin-1 levels in Western blots and increased
LC3 immunofluorescence [46]. In light of the findings of
decreased autophagy in HIV-infected primary CD4+ T
cells by Zhou and Spector [44], the observations of
increased autophagy in HIV-infected Jurkat cells [46]
could be explained by the presence of inherent differences
in autophagy between primary T cells and some immorta-
lized cell-lines. The observations of increased Beclin-1 and
LC3 levels in the later studies of HIV-1-infected primary
CD4+ T cells [46] are most consistent with the effect of
the exposure to HIV (see below) rather than the conse-
quence of HIV infection, particularly as the percent of
HIV-infected cells 2 was not established in those studies.
Importantly, HIV-1 also modifies autophagy in unin-

fected bystander CD4+ T cells. In a seminal paper,
Espert et al. reported that the accumulation of autopha-
gosomes and Beclin 1 in umbilical cord blood CD4+ T
lymphocytes was similarly induced by i) HEK.293 cells
transfected to express HIV-1 Env, ii) rapamycin, and iii)
CEM T cells infected with HIV-1NL4-3 [47]. Autophago-
somes did not accumulate in CD4+ T cells treated with
the drugs 3-MA and AMD3100 (a CXCR4 antagonist).
Also described in this study was that the Env-induced
autophagy preceded apoptotic cell death (see Autophagy
and HIV-1 disease progression). In follow-up studies,
this group determined that the fusion activity of the
HIV-1 envelope glycoprotein gp41 was primarily respon-
sible for this effect [48] and that more than 30 candidate
proteins are associated [49]. These proteins were largely
involved in degradation processes, redox homeostasis,
metabolism and cytoskeleton dynamics, and linked to
mitochondrial functions. Espert et al. have more recently
reported that R5 Env also induces autophagy and cell
death in uninfected CD4+ T cell lines [45]. Thus, the ef-
fect of HIV-1 Env on autophagy in CD4+ T cells does
not appear to be co-receptor specific. Env triggers a
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broad decrease in protein synthesis that may act to in-
duce autophagy by reducing levels of the inhibitory pro-
tein mTOR [49]. The contrasting observations of
inhibited autophagy in HIV-1 infected CD4+ T cells and
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elevated autophagy in bystander CD4+ T cells suggest
that productive infection can reverse the enhancing
effect of HIV-1 Env on autophagy in uninfected CD4+ T
cells.

Studies of macrophages
Macrophages are another important cellular reservoir of
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to be necessary for HIV-1 replication in MDM. The in-
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[45]. Interestingly, HIV was detected in the cells with
moderate, but not high, numbers of autophagosomes
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tion of both R5 and X4 viruses [45]. The siRNA-
mediated knockdown of Beclin 1 and Atg7 also dimin-
ished virus production in HIV-1SF162-infected MDM and
U937 cells (a myelomonocytic cell line) [39]. Conversely,
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HIV-1 production, as evidenced by the effects of bafilo-
mycin A1 [39]. While most studies of macrophages indi-
cate that HIV-1 promotes autophagosome formation
and inhibits the late proteolytic stage of autophagy,
decreased LC3-II levels in HIV-1-infected U937 cells
have been reported [44]. Thus, the effects of HIV-1 on
autophagy in monocytic cell lines can differ from those
found in MDM.
Mechanisms enabling HIV-1 to subvert autophagy in

macrophages have been elucidated [39]. Demonstrated is
that HIV-1 Gag and Nef interact with the autophagy
proteins LC3 and Beclin 1 respectively. The colocaliza-
tion of Gag with LC3 suggests that autophagy plays a role
in the biosynthesis, processing, or assembly of HIV-1
intermediates [39]. Alternatively, the Gag/LC3 colocali-
zation could reflect the targeting of Gag for autophagic
degradation. The association between Gag and LC3
appears to be unique to monocytic cells [39]. In binding
protein complexes containing Beclin 1, Nef is able to in-
hibit the proteolytic stages of autophagy and thereby pre-
vent the destruction of HIV-1 intermediates [39]. Thus,
HIV-1 Nef acts as an “antiautophagic maturation factor”
[39]. The Nef 174DD175 motif that is needed for CD4
downmodulation [51] is required for its interaction with
Beclin 1 [39]. Recently, Nef has also been shown to inter-
act with immunity-associated GTPase family M (IRGM)
to induce autophagy in macrophages [52]. These findings
indicate that Nef can have the dual function of initiating
autophagy and inhibiting its maturation. Unexplained is
the normal replication and cytopathicity exhibited by
some Nef-deleted HIV-1 isolates in vitro and in vivo
[53,54].
Another distinction between CD4+ lymphocytic and

monocytic cells is the effect of HIV-1 Env on auto-
phagy in bystander cells. In contrast to its effect on
CD4+ T cells, HIV-1 R5 and X4 Env, when expressed
by transfected HEK.293 cells, do not trigger uninfected
human monocytic leukemia THP1 cells, MDM, or
U937 to undergo autophagy [45]. This distinction
could explain the occurrence of CD4+ T cell losses
amidst relatively stable monocyte levels in HIV-
infected individuals [55].
Table 3 Relationships between HIV-1 proteins and autophagy

HIV-1 protein Relationship with autophagy

Gag In macrophages: Gag colocalizes with LC3, perhaps

Env In bystander T cells and neuronal cells: Env induces

Nef Nef interacts with IRGM to induce autophagy. Nef
and blocks the late proteolytic stage of autophagy.

Tat In macrophages: Tat blocks IFN-γ-induced LC3 expr

In bystander HUVEC*: Tat increases autophagy.

* Human umbilical vein endothelial cells.
HIV-1 Tat can have an indirect effect on autophagy in
macrophages. In healthy macrophages, autophagy is
induced by the pro-inflammatory cytokine interferon-
gamma (IFN-γ) [56]. However, pretreatment of mono-
cyte-derived macrophages with HIV-1 Tat, inhibits the
stimulatory effect of IFN-γ on autophagy and impairs
the antimicrobial functions of the cells [56]. The under-
lying mechanism involves the ability of Tat to block
STAT1 phosphorylation [56]. In other studies, Tat has
been found to inhibit autophagy in uninfected macro-
phages by increasing Akt, Src, and IL-10 production,
leading to the silencing of STAT3 and inhibition of
autophagy [57].
To summarize, the studies above indicate that HIV-1

proteins disrupt autophagy in HIV-infected and unin-
fected cells (Table 3). The effects of HIV-1 on autophagy
are cell-type specific and could be associated with the
observed differences in infectivity, virus replication kin-
etics, and cytopathicity among CD4+ cells of different
hematopoietic lineages. In this regard, studies of cell-
lines can be misleading with respect to the relationships
between HIV and autophagy in primary cells.

Autophagy and anti-HIV-1 immune responses
Distinguishing features of progressive HIV-1 infection
include impaired innate and adaptive immune
responses and hyper-immune activation [1,61]. Autop-
hagy is essential for the functionality of innate and
adaptive immune responses (see Figure 3) and the
maintenance of self-tolerance [38,62]. Thus, autop-
hagy can play important roles in immune cell func-
tions that have direct relevance to HIV-1 infection.

Innate immunity
Innate immune responses provide the earliest host
defense against microbial invasion [63]. Cells of the in-
nate immune system use pattern recognition receptors
(e.g. Toll-like receptors [TLRs] and nucleotide-binding
oligomerization domains [NODs]) to identify highly con-
served pathogen-associated molecular patterns (PAMPs,
e.g., unmethylated CpG motifs and viral single-stranded
RNA) [64]. The cell types of the innate immune system
References

to promote virion assembly. [39,45]

autophagy and promotes autophagic T cell death. [47,58]

also acts as an "antiautophagic maturation factor" [52,39]

ession and inhibits autophagy. [59]

[60]
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that can exhibit direct anti-HIV-1 activity include plas-
macytoid dendritic cells (pDCs), natural killer (NK) cells,
and monocytes/macrophages. While pDCs are scarcely
present in the blood (< 10 cells per μl), they are the
major type-1 interferon (IFN-α) producing cells [65].
pDCs secrete large amounts of IFN-α in response to
HIV-infected cells and thereby suppress HIV-1 replica-
tion in those cells [66]. The recognition of HIV-infected
cells by pDCs appears to be primarily mediated by
TLR7, a receptor for single-stranded RNA [67]. Import-
antly, the production of IFN-α by pDCs in response to
TLR7 signaling is dependent on autophagy [68,69]. Fur-
thermore, pDCs produce IFN-α in response to infectious
or AT-2 inactivated HIV-1MN through the induction of
autophagy following TLR7 signaling [41]. NK cells are
activated by pDCs responding to HIV-1 [70] and the
ability of NK cells to lyse HIV-infected target cells is
enhanced by IFN-α [71]. The activation of macrophages
via innate biosensors to secrete anti-HIV cytokines such
as the β-chemokines and the macrophage-derived anti-
HIV factor (MDAF) [72] can require autophagy [73].
Consequently, autophagy is crucial for suppression of
HIV-1 replication by the soluble factors and cytolytic
functions of the innate immune system.

Adaptive immunity
In addition to their roles in innate immunity, dendritic
cells (DCs) and macrophages promote adaptive immune
responses by surveying proteins and secreting cytokines
in response to pathogens [74]. In this regard, autophagy
can contribute to the processing and presentation of
viral peptides in the context of major histocompatibility
complex (MHC) class I and II molecules. Autophagy has
been observed to enhance the presentation of HSV-1
antigens on the MHC-I molecules of macrophages [75].
In contrast, the inhibition of autophagy in DCs by 3-MA
prevents the presentation of HIV-1 antigens on MHC-II,
but not cross-presentation on MHC-I to CD8+ T cells
[76]. Also, treatment of DCs with 3-MA to inhibit
autophagy results in reduced MHC-II expression and
impairs antigen presentation of respiratory syncytial
virus (RSV) [77]. In other studies, most Influenza A virus
antigens were presented to CD4+ T cells by MHC-II on
DCs without a requirement for autophagy [78]. These
heterogeneous observations suggest that the contribution
of autophagy to antigen presentation via MHC-I and II
molecules could be pathogen and cell-type specific.
The cytokines produced by DCs and macrophages

function to regulate autophagy in other immune
cells by intersecting with pathways upstream of
mTOR (see Figure 1) [62]. In general, Th1 cytokines
(e.g. IFN-γ) upregulate autophagy, while Th2 cyto-
kines (e.g. IL-4 and IL-13) abrogate this process
[79,80]. Notably, an intense cytokine storm occurs
during acute HIV-1 infection and large amounts of
IFN-γ, TNF-α, and IL-10 are produced by T cells
throughout the course of disease progression [81].
Thus, the cytokine response to HIV-1 infection can
influence autophagy in distal cells and tissues and
thereby have pathogenic consequences (see below).

Self-tolerance
The tight regulation of antiviral immune responses is ne-
cessary to prevent autoimmunity. The autophagic
mechanisms used by DCs to direct adaptive immune
responses (see above) are also used to promote self-tol-
erance. This function of autophagy is exemplified in
murine models. Athymic mice implanted with Atg5−/−

thymus tissue exhibit inflammation of the gut (colitis)
and other organs, indicating that autophagy is crucial for
thymic selection and self- tolerance [82]. Implicating a
role for autophagy in human autoimmune disorders are
findings that 1) polymorphisms in NOD2 and ATG16L1
are associated with susceptibility to the inflammatory
gut disorder Crohn's disease [83], and 2) the interaction
between the two proteins encoded by these genes is es-
sential for normal autophagy in DCs [84,85]. The dysre-
gulation of autophagy by viral proteins, perhaps due to
Env-mediated effects on bystander CD4+ T regulatory
cells, could contribute to aspects of autoimmunity
observed in HIV-1 infection [86].

Autophagy and HIV-1 disease progression
As a general homeostasis mechanism, autophagy func-
tions to maintain the health of cells and tissues. Aber-
rant autophagy has been implicated in a variety of
neurodegenerative disorders, cancers, and autoimmune
diseases [87]. Hence, the dysregulation of autophagy by
HIV, as discussed below, could play a role in the broad
pathology of HIV-1 infection (Table 4).

Persistent virus replication and CD4+ T cell loss
HIV-1 establishes a chronic viral infection with persistent
virus replication that is the underlying cause of HIV-1
disease progression [1]. As discussed (see Autophagy and
HIV-1 replication), HIV-1 subverts autophagy to pro-
mote virus replication in the infected cell. Also, the im-
portance of autophagy in antiviral immunity was
reviewed (see Autophagy and anti-HIV-1 immune
responses). Because the primary targets of HIV-1
infection are CD4+ cells that play key roles in antiviral
immunity, the dysregulation of autophagy in these cells
further promotes the chronicity of HIV-1 infection. As
described above, HIV-1 Env promotes hyper-autophagy
in bystander CD4+ T lymphocytes. This effect is asso-
ciated with increased apoptotic cell death and is pro-
posed to be a major mechanism for CD4+ T cell loss
[47]. During acute HIV-1-infection, massive losses of
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CD4+ T cells occur in gastrointestinal tissues [92,93],
perhaps due to the increased sensitivity of these cells to
Env-mediated autophagic cell death. Conceivably, elite
controllers of HIV-1 infection, who exhibit undetectable
viral loads and maintain stable CD4+ T cell counts [94],
differ in their regulation of autophagy. In this regard, the
restriction of virus replication by xenophagy could be an
important contributor to HIV-1 latency.
Opportunistic infections and cancers
The impairment of autophagy in cells of the innate and
adaptive immune systems could facilitate the rise of
opportunistic infections. Irregularities in the dendritic
cell compartment become prevalent with progression to
AIDS [1], including a decline in pDC number and func-
tion [79,95]. Thus, disruption of autophagy in dendritic
cells as some studies suggest, could be an important
contributor to HIV-1 disease progression. Monocyte-
derived dendritic cells exposed to HIV-1 exhibit reduced
LC3-II expression, decreased TLR responses, and
impaired antigen presentation functions [76]. These in-
hibitory effects of HIV-1 on autophagy in DCs were
mediated by Env-induced mTOR signaling [76]. Also,
Table 4 Roles of autophagy in HIV-1 infection, pathogenesis,

Topic Observations

HIV-1
replication

In HeLa cells, autophagy-associated genes
replication.

In CD4+ T cells, HIV-1 inhibits autophagy
decreased autophagosome numbers and
Beclin 1 and LC3 II.

HIV-1
pathogenesis

In macrophages, early nondegradative sta
HIV-1 replication. HIV-1 Gag interacts with
stages. The late proteolytic stages of auto
replication. Nef interacts with Beclin 1 to i

In bystander T cells, HIV-1 Env induces aut
accumulation of Beclin1 in uninfected CD

Bystander macrophages do not undergo E
HIV-1 inhibits autophagy in bystander ma
through an Akt-dependent pathway.

In dendritic cells, HIV-1 capture down-regu
immunoamphisomes in monocyte-derived
innate and adaptive immune responses. P
cells produce IFN-α in response to infectio
through autophagy-dependent TLR7 signa
could promote chronic immune activation

Neurotoxicity. The dysregulation of autoph
neuroAIDS. The brains of persons with HIV
increased levels of autophagic proteins an

Treatment * Antiretroviral therapy. HIV-1 protease inhib
in cancer cells. Clinical concentrations of E
and, in particular, mitophagy in hepatic ce
neuronal LC3 expression in the brains of F

Vitamin D. It has been observed that HIV-i
reduced levels of the hormonally active fo
this compound has autophagy-dependen

* Abbreviations: efavirenz, EFV; feline immunodeficiency virus, FIV; didanosine, ddI.
the interaction between HIV-1 Nef and Beclin-1
(discussed above) could inhibit autophagic pathways that
protect against tumorigenesis [96]. Thus, by inhibiting
autophagy-dependent mechanisms in DCs, HIV-1 could
allow for opportunistic infections and cancers to evade
innate and adaptive immune responses.
Neurodegenerative disease
The clearance of misfolded and aggregate proteins via
autophagy plays a protective role against neurodegenera-
tive disorders such as Huntington’s and Parkinson’s dis-
ease [97,98]. Defects in this housekeeping function of
autophagy are linked with HIV-associated neurologic
diseases. Autophagic markers are moderately increased
in brain tissues of persons having HIV-encephalitis
(HIVE) and HIV-associated dementia (HAD) in com-
parison to HIV-infected brains having no impairment
[58,88]. HAD is associated with increased levels of a
byproduct of CXCL12 (i.e., SDF-1), a chemokine that
blocks neuronal autophagy [89,99]. Soluble factors in
cultures of simian immunodeficiency virus (SIV)-
infected microglia also inhibit neuronal autophagy [100].
and treatment
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lasmacytoid dendritic
us or noninfectious HIV-1
ling. This response
.

[41,76]

agy is a feature of
-1 encephalitis exhibit
d autophagosomes.

[88,89]

itors induce autophagy
FV induce autophagy
lls. ddI treatment restores
IV-infected animals.

[90,91]

nfected individuals have
rm of vitamin D and that
t anti-HIV-1 effects on macrophages.

[36]



Killian AIDS Research and Therapy 2012, 9:16 Page 9 of 13
http://www.aidsrestherapy.com/content/9/1/16
In other studies, the exposure of neuronal cells to HIV-1
gp120 resulted in increased Beclin 1, LC3-II and ATG5
levels [58]. This bystander effect of HIV-1 Env that
increases autophagy in neuronal cells is similar to the
one described above for CD4+ T cells (see Autophagy
and HIV-1 replication).
In addition to Env, the HIV-1 transactivator protein,

Tat, can also disrupt autophagy in the neurological sys-
tem. Tat is detectable in the blood and cerebrospinal
fluid of HIV-infected individuals [101] and has been
shown to be cytotoxic to human brain microvascular
endothelial cells [102]. Human umbilical vein endothelial
cells (HUVEC), when exposed to cell culture medium con-
ditioned by HeLa-Tat cells, exhibit increased levels of
Nox4-dependent H2O2 production, endoplasmic reticulum
(ER) stress, and autophagy [60]. Thus, circulating Tat may
contribute to HIV-1 neuropathogenesis through an autop-
hagy-dependent mechanism.

Cardiovascular disease and frailty
Receiving increasing attention is evidence that HIV-1-
infected individuals age at a faster rate than others [103].
In this regard, autophagy may contribute to the
increased rates of cardiovascular disease (CVD) and
Table 5 Pharmacologic modifiers of autophagy

Drug category Drug or reagent Mechani

Inducers and enhancers of autophagy

Rapamycin* Inhibits m

Carbamazepine Inhibition

Lithium Inhibition

Digoxin Undeterm

Vitamin E Increases

Verapamil Reduces

Clonidine Reduces

Trehalose mTOR ind

Tamoxifen Increases

Niclosamide Inhibits m

Rottlerin Inhibits m

Amiodarone Inhibits m

Inhibitors of autophagy

Chloroquine Blocks th

Verteporfin Inhibitor

3-Methyladenine* Inhibitor

Bafilomycin A1* Ion Chan

Wortmannin PI3K inhib

LY294002 PI3K inhib

Leupeptin Inhibitor

Asparagine Prevents

* Commonly used in basic research studies.
frailty observed in HIV-infected individuals. Hyper-
autophagy has an important role in several types of car-
diomyopathy by functioning as a death pathway [104].
CVD, particularly congestive heart failure, is strongly
associated with a frailty phenotype (e.g., increased weak-
ness, slowness, exhaustion, anergy, and weight loss) that
becomes increasingly prevalent among older adults
[105,106]. Independent of age, a strong inverse correl-
ation exists between frailty and CD4+ T cell counts
among HIV-infected individuals [107]. Thus, increased
autophagic CD4+ T cell death due to Env-mediated
effects [47] could potentially contribute to increased
frailty. Also, autophagy influences longevity in eukaryotic
organisms [108] and therefore aberrant autophagy could
be an important frailty factor in the context of HIV-1
infection.

Implications for autophagy therapeutics
Irregular autophagy (e.g. Env-mediated hyper-autophagy),
as a contributor to HIV-1 disease progression, could be
therapeutically managed using a variety of pharmacologic
agents (Table 5). Autophagy modifiers are being clinically
evaluated for the treatment of Huntington's disease [109],
renal cell carcinoma [110], aging [111], and other
sm References

TOR signaling. [4]

of inositol monophosphatase. [118]

of inositol monophosphatase. [119]

ined. [120]

phosphorylation of mTOR substrates. [121]

calcium flux into the cell. [109]

cyclic adenosine monophosphate (cAMP). [109]

ependent mechanism. [122]

the intracellular level of ceramide. [123]

TOR signaling. [124]

TOR signaling. [124]

TOR signaling. [124]

e fusion of autophagosomes with lysosomes. [125]

of autophagosome accumulation. [126]

of class III PI3K (Vps34). [33]

nel Inhibitor; V-ATPase inhibitor. [34]

itor. [127]

itor. [127]

of serine and cysteine proteases. [128]

transfer of autophaged material to lysosomes. [129]
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autophagy-related disorders [112]. Autophagy enhancing
candidates include clonidine, minoxidil, verapamil, and
STF-62247 [109,110]. Also, the protease inhibitors nelfina-
vir and saquinavir are under evaluation for their auto-
phagy-enhancing activities [90,113]. In this regard,
autophagy needs further study in HIV-infected subjects
receiving protease inhibitors. Of note, very low concentra-
tions of rapamycin (e.g., < 1 nM) can have anti-HIV-1
activity in vitro [114,115]. This finding makes rapamycin
an attractive candidate for evaluation in the treatment of
HIV-1 infection [116]. Moreover, recent evidence suggests
that the autophagy promoting effects of vitamin D could
be of therapeutic benefit to HIV-infected individuals [36].
Because HIV-1 can require autophagy for virus replication
and this process becomes induced upon exposure to HIV,
drugs that inhibit autophagy could potentially be used to
lower HIV replication and to reduce hyper-autophagy
levels. Candidate drugs include wortmannin and other
PI3K inhibitors that are being evaluated for their potential
clinical use as autophagy blockers [117].
In light of the contributions of autophagy to classical

antigen presentation and innate pathogen sensory
mechanisms, autophagy modifiers could also be helpful
for an HIV-1 vaccine strategy. Indeed, the observation
that rapamycin-enhanced autophagy increases antigen
presentation by DCs and macrophages opens novel
approaches for boosting adaptive immunity in immuno-
compromised individuals or in the context of vaccin-
ation [130]. Furthermore, the potential effects of
exposure to HIV-1 proteins, such as gp120, on auto-
phagy (see Table 3) should be evaluated in the context of
vaccine studies.

Conclusions
Many questions remain pertaining to the relationship
between autophagy and HIV-1 infection. Yet unknown is
whether or not the ability of HIV-1 to promote auto-
phagy in bystander CD4+ T cells renders those cells
more susceptible to HIV-1 infection. Also unexplained
are the differential effects of HIV-1 on autophagy in
macrophages and CD4+ T cells. In addition to the need
for further basic research, translational studies are
needed to establish the magnitude of the effects of HIV-1
on autophagy in HIV-1 infected individuals. Moreover,
few studies have evaluated autophagy in animal models
of HIV infection.
In summary, the importance of autophagy in HIV-1

infection is becoming increasingly clear. Direct effects
of HIV-1 on autophagy include the subversion of
autophagy in HIV-infected cells and the induction of
hyper-autophagy in bystander CD4+ T cells. Because
HIV-1 targets key cytokine-producing and immunore-
gulatory cells, its disruption of autophagy in these
cells can have broad pathogenic consequences. Indeed,
autophagy appears to play a dual role in HIV-1 infection
and disease progression.

Endnotes
1 An April 2012 search of www.pubmed.gov using the

terms “HIV AND autophagy” returned 55 entries in the
database (Killian MS, independent observation).

2 With typical procedures and HIV-1 stock concentra-
tions (e.g. 1 μg/ml p24 equivalents), the frequency of
productively HIV-infected primary CD4+ T cell blasts
remains relatively low at day 3 post-infection e.g., gener-
ally less than 25% of the cells exhibit intracellular p24
or CD4 down-modulation (Killian MS, independent
observation).
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