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The D-amino acid peptide D3 reduces amyloid
fibril boosted HIV-1 infectivity
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Abstract

Background: Amyloid fibrils such as Semen-Derived Enhancer of Viral Infection (SEVI) or amyloid-β-peptide (Aβ)
enhance HIV-1 attachment and entry. Inhibitors destroying or converting those fibrils into non-amyloidogenic
aggregates effectively reduce viral infectivity. Thus, they seem to be suitable as therapeutic drugs expanding the
current HIV-intervening repertoire of antiretroviral compounds.

Findings: In this study, we demonstrate that the small D-amino acid peptide D3, which was investigated for
therapeutic studies on Alzheimer’s disease (AD), significantly reduces both SEVI and Aβ fibril boosted infectivity
of HIV-1.

Conclusions: Since amyloids could play an important role in the progression of AIDS dementia complex (ADC), the
treatment of HIV-1 infected individuals with D3, that inhibits Aβ fibril formation and converts preformed Aβ fibrils
into non-amyloidogenic and non-fibrillar aggregates, may reduce the vulnerability of the central nervous system of
HIV patients for HIV associated neurological disorders.
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Findings
Amyloid fibrils exhibiting a cationic surface [1], for ex-
ample those of the Alzheimer’s disease (AD) related
amyloid-β peptide (Aβ) and the Semen derived Enhancer
of Viral Infection (SEVI), promote HIV infection by fa-
cilitating viral attachment through neutralization of the
electrostatic repulsion between the negatively charged
surface of virions and target cells [2-4]. Experimental ap-
proaches to reduce SEVI-mediated enhancement of HIV-
1 infection by amyloid binding agents have already been
described [5-9]. However, except for epigallocatechin-3-
gallate, the major active constituent of green tea, most of
these compounds were shown to bind, but not to elim-
inate amyloids. Recently, it was demonstrated that the
small D-amino acid peptide D3 converts Aβ oligomers
and fibrils into non-amyloidogenic, non-fibrillar and
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non-toxic aggregates and reduces the cognitive deficits
of the central nervous system in transgenic AD model
mice [10]. Because many amyloid fibrils, despite their
composition of different peptides or proteins, show sig-
nificant structural similarities like a typical cross-beta
sheet quaternary structure, we intended to analyze the
inhibitory capacity of D3 to reduce other amyloid caused
pathologic effects.
In order to utilize amyloidogenic inhibitors to reduce

fibril boosted viral infectivity, we firstly wanted to un-
ravel whether fibrils or even monomers or oligomers of
Aβ are the causative agents for the infectivity enhancing
effect. To achieve this, synthetic human Aβ(1–42) pep-
tide (purity > 95%) was purchased from Bachem (Buben-
dorf, Switzerland). Lyophilizated Aβ(1–42) was dissolved
to 1 mM with hexafluoroisopropanol (HFIP) overnight
at room temperature (RT). Prior to use, HFIP was evap-
orated using a SpeedVac Concentrator 5301 (Eppendorf;
Hamburg, Germany) at RT. For preparation of Aβ(1–42)
fibrils, the Aβ pellet was dissolved in PBS (phosphate
buffered saline: 140 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, and 1.8 mM KH2PO4, pH 7.4) to 1 mM
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ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:aileen.funke@hs-coburg.de
mailto:D.Willbold@fz-juelich.de
mailto:schaal@uni-duesseldorf.de
http://creativecommons.org/licenses/by/2.0


Widera et al. AIDS Research and Therapy 2014, 11:1 Page 2 of 7
http://www.aidsrestherapy.com/content/11/1/1
and incubated four days at 37°C without shaking. To
remove all soluble Aβ, the samples were washed by
centrifugation and redissolved in PBS. For preparation
of Aβ(1–42) mono- and oligomers, the Aβ pellet was
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Figure 1 Aβ(1–42) fibrils but not mono- and oligomers enhance HIV-1
determined with TZM-bl cells using supernatant of transfected HEK 293T ce
pre-incubated for 5 min at RT with Aβ(1–42) fibrils. Subsequently, the pretr
induced luciferase activity was assayed 48 h post infection. (*** p < 0.001, *
of luciferase enhancement was quantified relative to cells infected in the a
cells, which were treated with the indicated concentrations of Aβ(1–42). (D
the absorption profile of Aβ(1–42) monomers (M) and oligomers (O), which
as in (A) but viruses were pre-incubated with Aβ(1–42) mono- and oligom
infected (n.i.); relative light units (RLU); size exclusion chromatography buffe
dissolved in SEC buffer (size exclusion chromatography
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enhancement potential, we used TZM-bl reporter cells
that harbor a luciferase and a β-galactosidase expression
cassette under the control of the HIV-1 LTR promoter,
which are activated in infected cells due to expression
of the HIV-1 trans-activator of transcription (Tat). These
reporter cells were infected with equal amounts of the
dual-tropic (R4 and R5) HIV-1 PI 952 [11] either in
presence or absence of Aβ(1–42) monomers, oligomers
or fibrils. For luciferase measurements, cells were rinsed
in PBS and dispensed in passive lysis buffer (PLB) and
shaken for 15 min at RT. Luciferase activity of cell
lysates was measured by adding Beetle-Juice (p.j.k;
Kleinblittersdorf, Germany) using an Infinite 200 PRO
multimode reader (Tecan; Männedorf, Switzerland). We
observed that Aβ(1–42) fibrils (Figure 1A and B) but
not mono- or oligomers (Figure 1E and F) were able to
enhance HIV-1 infection of TZM-bl cells. The enhan-
cing effect of Aβ(1–42) fibrils on HIV-1 infectivity was
observed at a concentration of 2 μg/ml and augments
with increasing Aβ(1–42) fibril concentrations, whereas
Aβ(1–42) fibrils alone had no effect on luciferase ex-
pression of TZM-bl cells (Figure 1C). In agreement with
Münch et al. [3], but in contrast to Wojtowicz et al. [2],
we did not observe any enhancing effect on HIV-1 in-
fection when using Aβ(1–40) fibrils (Innovagen; Lund,
Sweden) irrespective of whether these were incubated
for four or six days of oligomerization under the same
conditions as described above (Figure 2). The reason
for this discrepancy was already discussed by Münch
et al. arguing that amyloid fibrils composed of the
same protein can show different conformations with
distinct phenotypes [12].
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Figure 2 Aβ(1–42) but not Aβ(1–40) fibrils enhance HIV-1 infection of
PI 952 [11] were pre-incubated for 5 min at RT with the indicated concentr
and six days, respectively of oligomerization. Subsequently, the pretreated
luciferase activity was assayed 48 h post infection.
To analyze whether the infectivity boosting effect of
Aβ(1–42) but not Aβ(1–40) fibrils was cell type specific,
we applied our approach also to the HIV-1 susceptible
Molt-4 T cells [13,14]. Equal amounts of an R4 tropic
HIV-1 NL4-3 derivate, which expresses a NEF-GFP fu-
sion protein, were pre-incubated for 5 min at RT with
Aβ(1–42) or Aβ(1–40) fibrils (10 μg/ml) and PBS as a
control, respectively. Subsequently, the pre-treated vi-
ruses were used to infect Molt-4 T cells and the percent-
age of infected (GFP positive) cells was assayed by FACS
analysis by using FACSCalibur (BD; Franklin Lakes,
USA) 48 h post infection. As expected, treatment with
Aβ(1–42) but not with Aβ(1–40) fibrils resulted in ~ six-
fold higher percentage of GFP positive T cells when
compared to PBS treated cells indicating that Aβ(1–42)
specifically enhances viral infectivity also in T cells
(Figure 3).
We further addressed the question of whether the

boosted viral infectivity was also dependent on the
membrane fusion activity of the gp41 N-terminus.
Therefore, we transfected HEK 293T cells with pNL4-3
or the protease cleavage site mutant pNL Prot.Xa that
prevents the Env glycoprotein mediated membrane fusion
(kindly provided by Valerie Bosch) and performed immu-
noblot analysis of cellular as well as virion associated
gp160/gp41 by using Chessie 8 antibody [15]. Virions
were pelleted by using sucrose centrifugation as described
before [16]. Next, we incubated TZM-bl cells with wild-
type and mutant virus. By adding Aβ(1–42) fibrils, the
defect in viral entry could not be restored indicating that
the fibril-mediated enhancement was also dependent on
the membrane fusion activity of gp41 (Figure 4).
Aβ (1-40) 
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Figure 3 Aβ(1–42) peptide boosted infectivity of Molt-4 T cells. (A) Equal amounts of the R4 tropic HIV-1 NL4-3 lab strain expressing a
NEF-GFP fusion protein were pre-incubated for 5 min at RT with PBS only, Aβ(1–40) or Aβ(1–42) fibrils [10 μg/ml]. Subsequently, Molt-4 T cells
were infected with the pre-treated viruses and the percentage of HIV-1 infected (GFP positive) cells was assayed by FACS analysis 48 h post
infection. (B) The percentage of HIV-1 infected (GFP positive) cells.
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Figure 4 The fibril-mediated enhancement of HIV-1 infectivity is dependent on the membrane fusion activity of gp41. (A) TZM-bl cells
were infected with R4 tropic HIV-1 strain NL4-3 (wt) or protease cleavage site mutant derivate (Prot.Xa), which were pre-incubated for 5 min at RT
with Aβ(1–42) fibrils (50 μg/ml). Infection-induced luciferase activity was assayed 48 h post infection. (B) Immunoblot analysis of HEK 293T cells
transfected with pNL4-3 or the protease cleavage site mutant pNL Prot.Xa by using Chessie 8 antibody (NIH) for gp160/gp41 analysis [15] and the
p24 specific antibody (D7320, Aalto Bioreagents Ltd. Dublin, Ireland) for capsid protein detection. Virions were pelleted by using sucrose
centrifugation as described before [16].
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We next examined whether the peptide boosted en-
hancement can be reduced by pre-treatment with the non-
cytotoxic Aβ fibril inhibitor D3 [17] (JPT; Berlin, Germany),
which is a D-enantiomeric peptide (RPRTRLHTHRNR).
SEVI and Aβ(1–42) fibrils (10 μg/ml) were pre-treated
with D3 and the mixture was used to boost the infection
of TZM-bl cells as described above. Following an incuba-
tion time of 48 h, the infectivity was determined by lucif-
erase measurement and X-Gal staining (Figure 5). While
SEVI and Aβ(1–42) fibrils were able to boost viral infec-
tion at similar amounts, already equimolar doses of D3
(10 μg/ml) were sufficient to significantly reduce the
enhancing effect of SEVI (Figure 5A and 5C). By adding
higher amounts of D3 (100 μg/ml), luciferase expression
was further reduced to levels comparable with PBS
treated control samples (Figure 5A, 5C and 5F). Similarly,
the Aβ(1–42) boosted infection could be reduced. By add-
ing ten-fold higher concentration of the inhibitor D3
(100 μg/ml), the infection rate of Aβ(1–42) boosted vi-
rions was significantly reduced to levels of PBS treated
viruses (Figure 5B, 5D and 5F). To further control
whether the reducing effect of D3 on fibril boosted infect-
ivity was indeed due to the fibril-D3 interaction, we also
pre-incubated virus containing supernatants with D3 in
the absence of fibrils and then infected TZM-bl cells. As
shown in Figure 5E, when infected in the absence of
fibrils the cellular luciferase activity was not affected.
HIV-1 entry in female mucosa is restricted and re-

quires overcoming at least three hurdles. These are
to breach the mucosal barrier and get through the
epithelium, infection and replication in sub-epithelial
mononuclear cells and the initiation of a systemic infec-
tion in the lymph nodes [18]. Since genital mononuclear
cells, including dendritic cells (DCs), macrophages and
lymphocytes are susceptible to HIV-1 in vivo [18], amyl-
oid fibrils might help HIV-1 to penetrate the mucosa
and to reach these cells. Thus, treatment with D3 could
inhibit the first sub-epithelial contact and prevent viral
spreading.
In addition to its activity to enhance the infectivity

of HIV-1 in semen, amyloids could play an important
role in the progression of AIDS dementia complex
(ADC) also known as HIV encephalopathy, which de-
velops in between 20% and 30% of HIV patients in
the course of infection. Interestingly, the formation of
Aβ aggregates and fibrils is thought to precede the
clinical symptoms of AD by three to four decades, and
such fibrils may therefore be present in many mid-
aged people. Since, the D-amino acid peptide D3 dras-
tically reduces plaque load [17] and cognitive deficits
even in orally D3 treated AD transgenic mice [10], it
might be suitable to additionally reduce the fibril boosted
HIV-1 infectivity in vivo.
In conclusion, the application of D3 may reduce

SEVI-induced enhancement of viral infectivity of HIV-
1 and the vulnerability of the central nervous system
of HIV infected individuals. Thus, D3 seems to be suit-
able as therapeutic and prophylactic drug expanding
the current HIV-intervening repertoire of antiretroviral
compounds.
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Figure 5 Amyloidogenic inhibitor D3 reduces peptide boosted infectivity. (A and B) TZM-bl reporter cells were infected with equal
amounts of the dual-tropic HIV-1 lab strain NL4-3 PI 952 [11] in the presence of 10 μg/ml SEVI (A) or Aβ(1–42) fibrils (B). As indicated, the fibrils
were preincubated with D3 (0, 1, 10 or 100 μg/ml) prior to infection. Luciferase activity of infected cells was assayed 48 h post infection.
(C and D) X-fold change Luciferase RLUs from (A and B). (E) X-fold change Luciferase RLUs of infected TZM-bl cells, which were infected with
viruses that were treated with D3 in the absence of fibrils at the indicated concentrations. (F) X-Gal staining of TZM-bl reporter cells that were
infected as described above (A and B). (*** p < 0.001, ** p < 0.01 referred to fibril treated and infected cells).
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